For #1-6, identify the transversal connecting each pair of angles. Then classify the relationship between each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

- 1) ∠5 and ∠7
- 2) ∠10 and ∠11
- 3) ∠6 and ∠8
- 4) ∠9 and ∠10
- 5) ∠11 and ∠7
- 6) ∠5 and ∠6

For #7 – 9, describe the relationship between each pair of segments as parallel, skew, or intersecting. Explain your decision.

- 7) \overline{OL} and \overline{KJ}
- 8) \overline{NM} and \overline{NJ}
- 9) \overline{MI} and \overline{KO}

10) Identify any angles that are alternate exterior with $\angle 1$ in the diagram to the right.

For #11 - 13, identify any pairs of congruent angles with the given parallel lines. Write the theorem(s) that supports your conclusion.

11) $a \parallel b$

12) *AB* || *DC*

13) *AD* || *BC*

For #14 - 19, find the yalue of the variable(s) in each problem.

 $(8x - 10)^{\circ}$ $(6y + 20)^{\circ}$ $(7x)^{\circ}$

16)

18) Given $a \parallel b$ and $c \parallel d$, find x.

 $\begin{array}{c|c}
19) & p & q \\
\hline
4x^{\circ}/(6x+y)^{\circ}/(x+5y)^{\circ}
\end{array}$

For #20-22, find $m \angle 1$ if $a \parallel b$.

100° h

23) Use the diagram shown to find the measure of each numbered angle.

For #24 - 27, complete each proof.

 $\overline{AD} \parallel \overline{CF}$

Prove: $\angle 5 \cong \angle 6$

28) Given that $a \parallel b$, $\angle 2 = 67^{\circ}$, and $\angle 3 = 81^{\circ}$, then find the measure of each numbered angle in the diagram shown.

- 29) If two lines don't intersect, then they are parallel.
- 30) If two lines are skew, then they are coplanar.
- 31) If two lines intersect, then they are coplanar.

Answers:

- 1) r; consec int angles 2) v; corresp angles 3) s; alt int angles 4) v; alt ext angles 5) v; alt int angles
- 6) *t*; corresp angles 7) skew: lines don't intersect and are in diff planes 8) intersect: lines cross at N
- 9) parallel; lines don't intersect but are in the same plane 10) ∠8 and ∠11
- 11) $\angle 1 \cong \angle 2$ (If //, then corresp $\angle s \cong$); $\angle 1 \cong \angle 3$ (If //, then alt ext $\angle s \cong$); $\angle 3 \cong \angle 2$ (If vert $\angle s$, then \cong)
- 12) $\angle 1 \cong \angle 2$ (If //, then alt int $\angle s \cong$) 13) $\angle 4 \cong \angle 2$ (If //, then corresp $\angle s \cong$) 14) x = 10; y = 15
- 15) x = 108; y = 36; z = 3016) x = 10; y = 1717) x = 90, y = 93, z = 1518) x = 3019) x = 16; y = 20

В

20) 120° 21) 150° 22) 107° 23) $m \angle 1 = m \angle 2 = 115; m \angle 3 = 148; m \angle 4 = 32$

Proofs will be graded in class; following is the fewest number of steps to solve the proofs. 24) proof; 4 steps

- 25) proof; 5 or 6 steps 26) Proof; 3 steps 27) proof; 3 steps
- 28) $m \angle 1 = m \angle 5 = 99$; $m \angle 7 = m \angle 8 = 67$; $m \angle 6 = m \angle 9 = 113$; $m \angle 4 = m \angle 10 = 81$
- 29) S 31) A