3-3 Rotations

PINWHEELS Find the angle of rotation to the nearest tenth of a degree that maps *P* onto *P'*. Explain your reasoning.

14. Refer to page 243.

ANSWER:

90°; $360^{\circ} \div 8 \text{ petals} = 45^{\circ} \text{ per petal.}$ Two petal turns is $2 \cdot 45^{\circ}$ or 90° .

15. Refer to page 243.

ANSWER:

 154.2° ; $360^{\circ} \div 7$ petals = 51.4° per petal. Three petal turns is $3 \cdot 51.4^{\circ}$ or 154.2° .

Graph each figure and its image after the specified rotation.

16. $\triangle JKL$ has vertices J(2, 6), K(5, 2), and L(7, 5); 90° about the origin

ANSWER:

17. rhombus *WXYZ* has vertices W(-3, 4), X(0, 7), Y(3, 4), and Z(0, 1); 90° about the origin

ANSWER:

18. $\triangle FGH$ has vertices F(2, 4), G(5, 6), and H(7, 2); 180° about the origin

ANSWER:

20. trapezoid *ABCD* has vertices A(-3, 4), B(-1, 3), C(-1, 0), and D(-3, -1); 270° about the point (2, 1)

ANSWER:

Each figure shows a preimage and its image after a rotation about point P. Copy each figure, locate point P, and find the angle of rotation.

24.

ANSWER:

3-3 Rotations

ALGEBRA Give the equation of the line y = -x - 2 after a rotation about the origin through the given angle. Then describe the relationship between the equations of the image and preimage.

26.90°

ANSWER:

y = x - 2; perpendicular

27. 180°

ANSWER:

y = -x + 2; parallel

39. **CONSTRUCT ARGUMENTS** Is the reflection of a figure in the *x*-axis equivalent to the rotation of that same figure 180° about the origin? Explain.

ANSWER:

No; sample answer: When a figure is reflected about the x-axis, the x-coordinates of the transformed figure remain the same, and the y-coordinates are negated. When a figure is rotated 180° about the origin, both the x- and y-coordinates are negated. Therefore, the transformations are not equivalent.

40. **WRITING IN MATH** Do invariant points *sometimes*, *always*, or *never* occur in a rotation? Explain your reasoning.

ANSWER:

Sometimes; sample answer: When a figure is rotated about a point on the figure, then the point of rotation is invariant. If a figure is rotated about a point not on the figure, then there are no invariant points in the rotation.

41. Triangle *GHJ* has vertices G(1, 3), H(4, 3), and J(2, 0). Triangle G'H'J' is the image of triangle GHJ under the rotation $(x, y) \rightarrow (-y, x)$. Which of the following is a true statement about triangle G'H'J'?

A Triangle *G'H'J'* lies entirely in Quadrant III.

B Triangle G'H'J' intersects the positive y-axis.

C Triangle G'H'J' intersects the x-axis.

D Triangle G'H'J' overlaps triangle GHJ.

ANSWER:

В

44. Milo graphs the line x = 3. Then he graphs the image of the line using the rotation $(x, y) \rightarrow (-y, x)$. Which of the following points lies on the image of the line?

$$A (-3, 2)$$

$$C(-1, -3)$$

$$\mathbf{p}$$
 (2, -3)

ANSWER:

В