ALGEBRA Quadrilateral *ABCD* is a rhombus. Find each value or measure.

12. If $m \angle DPC = 3x - 15$, find x.

SOLUTION:

The diagonals of a rhombus are perpendicular to each other

$$m \angle DPC = 90$$
$$3x - 15 = 90$$
$$3x = 105$$
$$x = 35$$

ANSWER:

35

COORDINATE GEOMETRY Given each set of vertices, determine whether *¬JKLM* is a *rhombus*, a *rectangle*, or a *square*. List all that apply. Explain.

19.
$$J(-4, -1)$$
, $K(1, -1)$, $L(4, 3)$, $M(-1, 3)$

SOLUTION:

First, graph the quadrilateral.

If the diagonals of the parallelogram are congruent, then it is a rectangle. Use the Distance Formula to find the lengths of the diagonals.

$$JL = \sqrt{(4 - (-4))^2 + (3 - (-1))^2} = \sqrt{8^2 + 4^2} = \sqrt{64 + 16} = \sqrt{80}$$

$$KM = \sqrt{(-1 - 1)^2 + (3 - (-1))^2} = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20}$$

The diagonals are not congruent. So, the parallelogram is not a rectangle. Check whether the two diagonals are perpendicular.

$$m_{JL} = \frac{3 - (-1)}{4 - (-4)} = \frac{1}{2}$$

$$m_{KM} = \frac{3 - (-1)}{-1 - 1} = -2$$

The diagonals are perpendicular. So, it is a rhombus.

ANSWER:

Rhombus; the diagonals are \perp .

6-5 Special Parallelograms: Rhombi, Squares

22.
$$J(-1, 1), K(4, 1), L(4, 6), M(-1, 6)$$

SOLUTION:

First, graph the quadrilateral.

If the diagonals of the parallelogram are congruent, then it is a rectangle. Use the Distance Formula to find the lengths of the diagonals.

$$JL = \sqrt{(4 - (-1))^2 + (6 - 1)^2} = \sqrt{5^2 + 5^2} = \sqrt{25 + 25} = \sqrt{50}$$

$$KM = \sqrt{(-1 - 4)^2 + (6 - 1)^2} = \sqrt{(-5)^2 + 5^2} = \sqrt{25 + 25} = \sqrt{50}$$

The diagonals are congruent. So, the parallelogram is a rectangle. Check whether the two diagonals are perpendicular.

$$m_{JL} = \frac{6-1}{4-\left(-1\right)} = 1$$

$$m_{KM} = \frac{6-1}{-1-4} = -1$$

The diagonals are perpendicular. So, it is a rhombus.

Since the diagonals are both congruent and perpendicular to each other, the parallelogram is a rectangle, a rhombus, and a square.

ANSWER:

Square, rectangle, rhombus; all sides are \cong and \perp .

ABCD is a rhombus. If PB = 12, AB = 15, and $m\angle ABD = 24$, find each measure.

24. CP

SOLUTION:

All four sides of a rhombus are congruent and the diagonals are perpendicular to each other.

So, by the Pythagorean Theorem, $CP^2 = BC^2 - PB^2$.

BC = AB. Substitute AB for BC.

$$CP^2 = 15^2 - 12^2 = 81.$$

$$CP = \sqrt{81} = 9$$

ANSWER:

9

25. *m∠BDA*

SOLUTION:

All four sides of a rhombus are congruent. So, $\triangle ABD$ is an isosceles triangle. Then, $m\angle BDA = m\angle ABD = 24$.

ANSWER:

24

6-5 Special Parallelograms: Rhombi, Squares

WXYZ is a square. If WT = 3, find each measure.

28. *XY*

SOLUTION:

The diagonals of a square are congruent and bisect each other at right angles.

So,
$$YT = XT = WT = 3$$
.

By the Pythagorean Theorem, $XY^2 = YT^2 + XT^2$.

$$XY^2 = 3^2 + 3^2 = 18$$

$$XY = \sqrt{18}$$

$$XY = 3\sqrt{2}$$

ANSWER:

$$3\sqrt{2}$$

30. *m∠WYX*

SOLUTION:

In a square, each diagonal bisects a pair of opposite angles. So, $m \angle WYX = \frac{1}{2}(m \angle XYZ) = 45$.

ANSWER:

45

48. **CHALLENGE** The area of square *ABCD* is 36 square units and the area of $\triangle EBF$ is 20 square units. If $\overline{EB} \perp \overline{BF}$ and $\overline{AE} = 2$, find the length of \overline{CF} .

SOLUTION:

Since the area of the square is 36 square units, the

length of each side of the square is 6 units. And, all four angles of a square are right angles. So, by the Pythagorean Theorem,

$$EB^2 = AE^2 + AB^2 = 2^2 + 6^2 = 40$$

$$EB = \sqrt{40} = 2\sqrt{10}$$

The area of $\triangle EBF$ is 20 square units. So,

$$\frac{1}{2}(EB)(BF) = 20.$$

$$\frac{1}{2} \left(2\sqrt{10} \right) (BF) = 20$$

$$\sqrt{10}BF = 20$$

$$BF = \frac{20}{\sqrt{10}}$$

$$BF = \frac{20}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}$$

$$BF = \frac{20\sqrt{10}}{10}$$

$$BF = 2\sqrt{10}$$

 $\overline{EB} \cong \overline{BF}$.

Also, we have

$$\overline{BA} \cong \overline{BC}$$
 and $m \angle BAE = m \angle BCF = 90$.

So, by the HL postulate, $\triangle BAE \cong \triangle BCF$.

$$AE = CF$$
 by CPCTC

Therefore, CF = 2.

ANSWER:

2

6-5 Special Parallelograms: Rhombi, Squares

51. Julia is designing a pair of earrings. The figure shows one of the earrings. Julia knows that quadrilateral JKLM is a parallelogram and that $m \angle KLN = 54$.

What should the measure of $\angle LKN$ be in order for the earning to be a rhombus?

A 36

B 54

C 90

D 108

SOLUTION:

The sum of the measures of the angles of a triangle is 180°, so write an equation and solve.

Let *x* represent $m \angle LKN$.

$$54 + x + 90 = 180$$
$$x = 36$$

So, the correct answer is choice A.

ANSWER:

A