Unit 10 Calendar

N	a	n	16	:

Day	Date	Assignment (Due the next class meeting)	
Tuesday	3/29/22 (A)	10.1 Worksheet	
Wednesday	3/30/22 (B)	Properties of Exponents & Base e	
Thursday	3/31/22 (A)	10.2 Worksheet	
Friday	4/1/22 (B)	Graphing Exponential Functions & Base e (Day 1)	
Monday	4/4/22 (A)	10.3 Worksheet	
Tuesday	4/5/22 (B)	Graphing Exponential Functions (Day 2)	
Wednesday	4/6/22 (A)	10.4 Worksheet	
Thursday	4/7/22 (B)	Changing the Base of an Exponential Function	
Friday	4/8/22 (A)	10.5 Worksheet	
Monday	4/11/22 (B)	Modeling with Exponential Functions (Growth and Decay)	
Tuesday	4/12/22 (A)	10.6 Worksheet	
Wednesday	4/13/22 (A)	Solving Exponential Equations	
Thursday	4/14/22 (A)	Unit 10 Practice Test	
Friday	4/15/22 (B)		
Tuesday	4/19/22 (A)	Unit 10 Review	
Wednesday	4/20/22 (B)		
Thursday	4/21/22 (A)	Unit 10 Test	
Friday	4/22/22 (B)	Unit 10 Test	

- * Be prepared for daily quizzes.
- * Every student is expected to do every assignment for the entire unit.
- * Try www.khanacademy.org if you need help outside of school hours.
- * Student who complete 100% of their homework second semester on-time will receive a pizza party and 2% bonus to their grade!
- **★** Don't forget about the webpage: www.washoeschools.net/drhsmath

10.1 Notes: Properties of Exponents & Base e

Let a and b be real numbers and let m and n be integers

Product of Powers	$a^m \bullet a^n = Q^{m+n}$	$\chi^{3} \chi^{3} = \chi^{5}$
Power of a Power	$(a^m)^n = a^m$	$(x^{a})^{3} = x^{a}$
Power of a Product	$(ab)^m = \alpha^m \delta^m$	$(XA)_3 = X_3A_3$
Negative Exponent	$a^{-m} = \frac{1}{\Omega m}$	$a^{-5} = \frac{1}{95}$ or $\frac{1}{95} = 95$
Zero Exponent	$a^0 = 1$	()° = 1
Quotient of Powers	$\frac{a^m}{a^n} = Q^{m-n}$	$\frac{\chi^{10}}{\chi^{7}} = \chi^{3}$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a m}{b m}$	(x3)10 = x 30

Examples: Simplify.

1)
$$(x^3y^6)^3$$

 $\times^{3\cdot3}$ $\vee^{6\cdot3}$

$$(x^{3})^{2} \cdot (xy^{2})^{4}$$

$$(x^{3})^{2} \cdot (xy^{2})^{4}$$

$$(x^{3})^{2} \cdot (xy^{2})^{4}$$

$$(x^{4})^{3} \cdot (xy^{2})^{4}$$

$$(x^{4})^{3} \cdot (xy^{2})^{4}$$

1)
$$(x^{3}y^{6})^{3}$$
 2) $(x^{3})^{2} \cdot (xy^{2})^{4}$ 3) $(x^{2}y^{-6})^{7}$ 4) $(2a^{2}b^{8})^{0}$
 $x^{3 \cdot 3} \cdot y^{6 \cdot 3}$ $x^{3 \cdot 2} \cdot y^{4} \cdot y^{2 \cdot 4}$ $x^{2 \cdot 7} \cdot y^{-6 \cdot 7}$ 1

 $x^{9}y^{18}$ $x^{6} \cdot x^{4}y^{8}$ $x^{10}y^{8}$ $x^{11}y^{-4}$ $x^{11}y^{-4}$

Try one of the following: a) $(x^2y^7)^6$

a)
$$(x^2y^7)^6$$

b)
$$(x^{-2}y)^3 \cdot y^4$$

c) 15^{0}

Examples: Simplify.

$$5) \ \frac{x^5 y^2}{x^{15} y^8}$$

$$6) \quad \left(\frac{a^4}{b^2}\right)^2 \quad \underline{a^8} \quad b^4$$

$$\frac{r \circ s}{s^3}$$

8)
$$\frac{c \cdot c^4}{c^2}$$

1	77711	
×1046	the fix the same	
	1	

Try one of the following: * try one of the following * following * b) $\left(\frac{q^7}{r^{-2}}\right)^4$

a)
$$\frac{x^7y^{16}}{x^{15}y^{12}}$$

following
$$\bigstar$$
 b) $\left(\frac{q}{r}\right)$

Algebra 2

Unit 10 Notes

Examples: Simplify.

9)
$$\frac{16m^4n^{-5}}{2n^{-5}m^7}$$

$$10) \quad \frac{x^2 y^{-3}}{(2x^3 y^{-2})^2}$$

11)
$$\frac{4^{2} (64)^{3}}{4^{4}}$$
 $4^{2} \cdot (4^{3})^{3}$
 4^{4}
 $4^{2} \cdot 4^{9}$
 $4^{2} \cdot 4^{9}$
 $4^{2} \cdot 4^{9}$
 $4^{11} = 4^{7}$

Try one of the following!

a)
$$\frac{(a^2b^4)^2}{a^{-3}b}$$

b)
$$\frac{24xy^6}{4x^{-2}y^4}$$

c)
$$\frac{4^8 \cdot 2^2}{2^{20}}$$

$$\frac{990}{918} = \frac{99}{1}$$

The Natural Base e:

e 18 9# 2.7

(11Ke 71 18 3.14...)

Examples: Simplify the following expressions.

$$13) \quad \frac{18e^4}{9e^3}$$

$$QC$$

14)
$$(-4e^{-5x})^3$$

-64e-15x = $-\frac{64}{6}$

Try one of the following!

a)
$$-5e^3 \cdot 2e^6$$

b)
$$\frac{24e^4}{6e^3}$$

c)
$$(-3e^{-4x})^2$$

O(e^{-8x} = $\frac{O}{e^{-8x}}$

10.2 Notes: Graphing Exponential Functions & Base e (Day 1)

Graphing Exponential Functions:

(in set notation) Domain: (-∞, ∞)

Range: Y>O

Linear Parent Function: $y = 2^x$

x	у	(x,y)
-2	2-2=14	(-2,1/4)
-1	2 = 1/2	(-1,1/2)
0	2°=1	(0,1)
1	2=2	(1,2)
2	2=4	(2,4)

y-intercept: (O, 1)

Horizontal Asymptote: Y=O

What happens when we change b (when b > 1)?

Graph each of the functions on the graphing calculator. Sketch your results on the graph provided.

a.
$$y = 2^x$$

when the base

b.
$$y = e^x$$

changes, the graph gets

b.
$$y = 3^x$$

Steeper but still goes through 10,1

c.
$$y = 4^x$$

d. $y = 10^x$

Graphing $f(x) = ab^{x-h} + k$, when b > 1 (Exponential Growth)

What happens when we change h & k?

Graph the following exponential equation. Explain how the graph is transformed from the parent function $f(x) = 2^x$. Also, state the domain and range for each function & describe the end behavior.

 $f(x) = 2^{x+1} + 21$ -asymptote

Transformation: $\wedge \geqslant \leftarrow 1$

Domain: R

Range: 479

End Behavior: 98 x 700 y -700

How does the graph of the exponential function change as h & k changes?

How does the graph of the exponential function change as the base b changes? gets steeper

What happens when we change a?

Graph each function on the graphing calculator. Sketch your results on the graph provided.

a.
$$f(x) = 4^x$$

b.
$$g(x) = 3(4)^x$$
 (0,3) instead of

c.
$$h(x) = \frac{1}{2} (4)^x$$

 $h(x) = \frac{1}{2} (4)^{x}$ $\int_{-3} goes \, \text{Through } (0, 1/2)$

Compare the parent graph, f(x), with g(x) & h(x). What is the domain, range, & end behavior for each graph? What do you notice about the y –intercepts?

everything is the same execpt for y-intercept

How does the graph of the exponential function change as a changes? Stretch | Compress

Steps to Graph Exponential Functions:

- 1) 118+ a, b, n, K
- a) graph the asymptote (k-value)
- 3) gotor v from y-axis & then cor->h
- 4) drop 100 like it's not, ->1, 1 or va oase
- 5) grapn

Examples

Graph each exponential function. Describe the domain & range. ASYMPTOTE

1.
$$y = 3^x$$

Domain: R

Range: Y>0

2.
$$y = 4^{x+2} - 3$$

Domain: R

Range: 47-3

Try one of the following:

3.
$$y = 3^{x-1}$$

Domain: R

470 Range:

Domain: R

Range: y>5

Examples

Graph each exponential function. Describe the domain & range.

5. $y = 2 \cdot 3^x$

(0,2)

Domain: R

Range: 470 6. $y = -1 \cdot 4^{x+2} - 3$ asymptote

Domain:

Range: 44-3

Try one of the following:

7. $y = 4 \cdot 3^{x-1}$

Domain: R

Range: 470 8. $y = -3 \cdot 4^{x-2} +$

Domain: R

Y65 Range:

- When evaluating the function $f(x) = 2^{x-4}$ for any real number x, what must be true about
 - A. The value of f(x) is always negative
- C. The value of f(x) is always greater than 4
- The value of f(x) is always positive
 - D. The value of f(x) is always less than 4 what is the range?

10.3 Notes: Graphing Exponential Functions (Day 2)

Graphing $f(x) = ab^{x-h} + k$, when 0 < b < 1 (Exponential Decay)

(in set notation)
Domain:

Range: 470

Graph the Function: $f(x) = \left(\frac{1}{2}\right)^x$

x	y	(x, y)
-2	4	(x,y) (3,4) (-1,3)
-1	8	(-1,2)
0	1	(0,1)
1	1/0	(1, 1/2)
2	1/4	(2,1/4)

y-intercept: (6,1)

Horizontal Asymptote: $\sqrt{-}$

As your go right, are the values increasing or decreasing? Clear easing

Is this exponential growth or decay? Why? decay, b/c it is decreasing (02621)

What happens when we change h & k (when 0 < b < 1)?

Graph each of the following functions on the graphing calculator. Sketch your results on the graph provided. Describe the transformation from the parent function, f(x), when you change h & k.

a.
$$f(x) = \left(\frac{1}{2}\right)^x$$

b.
$$g(x) = \left(\frac{1}{2}\right)^{x-2}$$

c.
$$h(x) = \left(\frac{1}{2}\right)^{x+1} - 3$$

Vertical & Horizontal Reflections

Use the graphing calculator to graph each of the following functions.

a.
$$y = 2^{-x} \left(\frac{1}{2}\right)^{X}$$

d.
$$y = \left(\frac{1}{2}\right)^x$$

b.
$$y = 3^{-x} \left(\frac{1}{3}\right)^{x}$$

e.
$$y = \left(\frac{1}{3}\right)^x$$

c.
$$y = e^{-x} \left(\frac{1}{e}\right)^x$$

f.
$$y = e^x$$

Which of these are exponential growth functions?

F

Which of these are exponential decay functions?

Examples:

1. The graph $f(x) = 2^x$ is translated two (2) units up, four (4) units right, & has a vertical reflection (reflected across the x-axis). Write the equation of the function after the transformation.

2. The graph $f(x) = e^x$ is translated down five (5) units. Write the equation of the function after the transformation.

$$f(x) = e^{x} - 5$$

You try!

3. The graph of $f(x) = \left(\frac{1}{2}\right)^x$ is translated two (2) units to the right, three (3) units up, and has a vertical stretch by a factor of four (4). Write the equation of the function after the transformation.

$$f(x) = 4(\frac{1}{2})^{x-a} + 3$$

Examples:

Graph each exponential function. Describe the domain & range.

4.
$$y = \left(\frac{1}{2}\right)^{x+3}$$

$$5. \ y = -\left(\frac{1}{3}\right)^{x-2} - 4$$

Domain: R

Range:

Domain: R

Range: Y2-4

Try on of the following!

6.
$$y = -\left(\frac{1}{2}\right)^x + 1$$

6.
$$y = -\left(\frac{1}{2}\right)^x + 2$$
 q^{-1} 7. $y = \left(\frac{1}{3}\right)^{x+3} + 5$

Domain: TR

Domain: TR

Range: y 4 2

Range: V>5

Examples:

Which of the following functions are examples of exponential growth & which are examples of exponential decay? Why?

8.
$$f(x) = 0.25 4$$

9.
$$h(x) = \underbrace{0.9^x}_{\text{olecay}}$$

10.
$$g(x) = \left(\frac{3}{2}\right)^{-x} = \left(\frac{2}{3}\right)^{x}$$

$$decay$$

11.
$$s(x) = \frac{2}{3} (e)^{x}$$
growth

Try one of the following:

12.
$$k(x) = \left(\frac{2}{3}\right)^x$$

$$0 \in COY$$

13.
$$p(x) = \left(\frac{2}{3}\right)^{-x} = \left(\frac{3}{5}\right)^{X}$$
O YOWTY)

10.4 Notes: Changing the Base of Exponential Functions

Use your graphing calculator to compare f(x) & g(x).

What do you notice about the graphs of each pair?

Use the properties of exponents to explain why f(x) = g(x)

$$\left(\frac{1}{2}\right)_{x} = \left(\frac{3}{13}\right)_{x} = \frac{1}{1}x$$

$$\left(\frac{1}{2}\right)_{x} = \left(\frac{3}{13}\right)_{x} = \frac{1}{1}x$$

	f(x)	g(x)
Α	$f(x)=2^{3x}$	$g(x) = 8^x$
В	$f(x) = \left(\frac{1}{2}\right)^{2x}$	$g(x) = \frac{1}{4}^x$
С	$f(x) = \left(\frac{3}{2}\right)^x$	$g(x)$ $(2)^{-x}$

Example:

Write each of the following exponential functions as the same function with a different base.

$$1. \qquad f(x) = 2^{5x}$$

$$2. \qquad g(x) = 25^x$$

Try these!

$$f(x) = 3^{3x}$$

$$(3^3)^{x} = 27^{x}$$

$$4. \quad f(x) = 16^x$$

Example:

5. Which of the following would NOT produce the same graph as $g(x) = 729^x$?

A.
$$h(x) = 3^{6x}$$

B.
$$h(x) = 9^{3x}$$

$$(C.)$$
 $h(x) = 6^{4x}$

D.
$$h(x) = 27^{2x}$$

Rational Roots

Rational Exponents: $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

Simplify:

a.
$$x^{4/3}$$

b.
$$x^{5/2}$$

c.
$$6^{5/3}$$

Think back to previous units...apply properties & rules that we have learned about to simplify the following problems as best you can with a partner.

6.
$$9^{\frac{1}{2}} \cdot 9^{\frac{3}{2}}$$

$$9^{\frac{4}{3}} = 9^{2} = 81$$

7.
$$\frac{3\overline{6}}{1}$$
 $\frac{3}{3}$
 $\frac{5}{6}$
 $\frac{3}{6}$
 $\frac{3}{6}$
 $\frac{3}{6}$
 $\frac{3}{6}$
 $\frac{3}{6}$
 $\frac{3}{6}$
 $\frac{3}{6}$

Examples:

Simplify the following expressions. Assume all variables are positive values.

9.
$$\frac{16^{2}}{2^{3}}$$
 $(2^{4})^{2}$
 $\frac{3^{8}}{2^{3}} = 3^{5}$

$$10. \frac{3^{2} \cdot 9^{3}}{3^{4}}$$

$$\frac{3^{2} \cdot 3^{6}}{3^{4}} = 3^{4}$$

ostive values.

11.
$$x^{3/4} \cdot y^{2/3} \cdot x^{3/4} \cdot \sqrt[3]{x}$$
 $\times \sqrt[3]{3}$

12.
$$\frac{a^{1/3}\sqrt{b}}{a^{4/3}b^{1/2}}$$

$$Q^{1/3}Q^{1/3}$$

$$Q^{4/3}Q^{1/3}Q^{1/3}$$

$$\frac{1}{Q^{3/3}} = \frac{1}{Q}$$

13.
$$\frac{\left(\frac{a^4b^2/3c^{1/5}}{a^6b^{1/3}c^{2/5}}\right)^5}{q^{30}b^{1/3}c^{5/5}}$$

$$\frac{q^{30}b^{1/3}c^{5/5}}{q^{30}b^{5/3}c^{10/5}}$$

$$\frac{b^{5/3}c^{10/5}}{q^{10}c}$$

$$14. \left(\frac{-2x^3y^{1/3}}{3x^{2/3}y^{2/3}}\right)^3$$

$$\frac{-\partial^3 \chi^9 \gamma^1}{\partial 7 \chi^{6/3} \gamma^{6/3}}$$

$$\frac{-8 \chi^9 \gamma}{\partial 7 \chi^2 \gamma^2}$$

$$\frac{-8 \chi^7}{\partial 7 \gamma}$$

Try one of the following!

Simplify the following expressions. Assume all variables are positive values.

$$15. \left(\frac{5^2}{5^4}\right)^{\frac{3}{2}}$$

$$\frac{5^3}{5^6} = \frac{1}{5^3}$$

$$\begin{array}{r}
 16. \quad \frac{64^{1/2} \cdot 4}{4^{3}} \\
 (4^{4})^{1/2} \cdot 4 \\
 \hline
 4^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3} \\
 6^{3}$$

$$17. \left(\frac{-3\sqrt{a} \cdot b^{3/4}}{4a^{5/2}b^{1/4}}\right)^{2}$$

$$\frac{9a\%^{3}19}{16a^{5}b^{1/9}} = \frac{9\%}{16a^{4}}$$

10.5 Notes: Modeling with Exponential Functions

Exponential Growth & Decay

Exponential Growth Formula: $A(t) = A_o \sqrt{1+r} t$

Exponential Decay Formula: $A(t) = A_0 (1-r)^{t-7} 1885 + 1000$

Vocabulary

- Principle: Ao Togme
- Initial Amount: 🎝 o
- Rate: Y

• Compound Interest:

- Compounded Quarterly
- Compounded Monthly
- Compounded Weekly
- o Compounded Daily
- Compounded Continuously

Example 1:

Janelle invests \$5000 in an account that earns interest at a rate of compounded annually.

a. Is this exponential growth or exponential decay?

d. Find the balance after 6 years.

YOU TRY!

Example 2:

A bacteria population starts at 2,032 and decreases at about 15% per day. Graph the function. Then predict how many bacteria there will be after 7 days.

b. Write a function representing the number of bacteria present each day.

c. Graph the function.

d. Find the number of bacteria after 7 days.

Example 3:

The rate at which caffeine is <u>climinated</u> from the bloodstream of an adult is about 15% per hour. An adult drinks a caffeinated soda, and the caffeine in his/her bloodstream reaches a peak level of 30 milligrams.

- a. Is this exponential growth or exponential decay?
- b. Write the function that gives the remaining caffeine at t hours after the peak level.

c. Graph the function.

d. Find the amount of caffeine remaining after 4 hours 5

Example 4:

Keiko invests \$2700 in an account that earns 2.5% annual interest compounded continuously. How much money will she have in her account after 5 years? Use $A(t) = Pe^{rt}$.

Example 5: You deposit \$5000 in an account that earn 3.5% compounded quarterly. How much money will you have after 3 years? Use $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$; where n is the number of times per year at an investment is compounded.

$$A(3) = 5000(1 + \frac{0.035}{4})^{4(3)} = $5051.00$$

You try these!

Example 6: Miguel invests \$4800 at 1.9% annual interest compounded continuously. How much money will he have in his account after 3 years? Use $A(t) = Pe^{rt}$.

Example 7: Sarah deposits \$10,500 in an account that earns 6.7% compounded daily. How much money will Sarah have after $\frac{7 \text{ years?}}{t}$ Use $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$

$$A(7)=10,500(1+\frac{0.067}{365})^{365(7)}$$

=\$16782.43

10.6 Notes: Solving Exponential Equations

Property of Equality for Exponential Equations:

Work with a partner and try to find the value of x. Be prepared to share your process with the class.

$$2^{x+4} = 2^{2x+3}$$

$$\chi + 4 = 0 \times + 3$$

$$1 = \chi$$

Examples: Solve for x and check your solutions.

1)
$$2^{x-1} = 32$$

 $x-1 = 5$
 $x = 6$

2)
$$e^{3x} = e^{x+12}$$

 $3x = x+13$
 $3x = 13$
 $x = 6$

3)
$$\frac{1}{64} = 4^{2x-4}$$

$$\frac{1}{4^3} = 4^{2x-4}$$

$$4^{-3} = 4^{2x-4}$$

$$-3 = 2x-4$$

$$1 = 2x \rightarrow x = \frac{1}{2}$$

4)
$$9^{2x} = 27^{x+1}$$

 $(3^2)^{2x} = (3^3)^{x-1}$
 $3^{4x} = 3^{3x+3}$
 $4x = 3x+3$
 $x = 3$

Try one of the following!

5)
$$15^{2x-9} = 15^{5x+6}$$

 $0 \times -9 = 5 \times + 6$
 $-45 = 3 \times 6$
 $\times = -5$

6)
$$2^{3x+1} = \frac{1}{32}$$

 $3^{3x+1} = 2^{-5}$
 $3^{x+1} = -5$
 $3^{x} = -6$
 $x = 2$

7)
$$16^{3x} = 64^{x+2}$$
 $(43)^{3x} = (43)^{x+3}$
 $46^{x} = 43^{x+6}$
 $6x = 3x+6$
 $3x = 6$
 $x = 3x = 6$
 $x = 3x = 6$

Examples: Solve each system of exponential equations for x by setting f(x) = g(x). Verify your answers using a graphing calculator.

8.
$$\begin{cases} f(x) = 3\\ g(x) = 27^{x} \end{cases}$$
$$3 = 37^{x}$$
$$1 = 3^{x}$$
$$1 = 3^{x}$$
$$x = \frac{1}{3}$$

9.
$$\begin{cases} f(x) = 5^{2x} \\ g(x) = 125^{x-2} \end{cases}$$
$$5^{2x} = (5^{3})^{x-2}$$
$$2x = 3x - 60$$
$$-x = -4e$$
$$x = 6$$

You try these

10.
$$\begin{cases} f(x) = e^{2x} \\ g(x) = e^{x+5} \end{cases}$$
$$e^{2x} = e^{x+5}$$
$$2x = x+5$$
$$x = 5$$

11.
$$\begin{cases} f(x) = 4^{x} \\ g(x) = 32^{x-3} \end{cases}$$
$$4^{x} = (2^{5})^{x-3}$$
$$2^{2x} = 2^{5x-15}$$
$$2x = 5x-16 \quad x=5$$
$$-3x = -15$$

Example 12: Use your graphing calculator to solve the following problem

The equation $f(x) = 4.1(1.33)^x$ models the population of the United States, in millions, from 1790 to 1890. In this equation, x is the number of decades since 1790, and f(x) is the population in millions. In what year did the population reach 71 million?

Let $f(x) = 4.1(1.33)^x$ & let g(x) = 71. To solve for x, find where f(x) = g(x).

Let
$$f(x) = 4.1(1.33)^{x}$$
 & let $g(x) = 71$. To solve for x , find where $f(x) = g(x)$.

$$\frac{71}{4.1} = \frac{4.1(1.33)^{x}}{4.1} = \frac{71}{4.1} = 1.33^{x}$$

$$\frac{71}{4.1} = \frac{4.1(1.33)^{x}}{4.1} = \frac{4.11}{4.1} = \frac{4.11}{4.11} = \frac{4.11}{4$$

Example 13: Write an exponential function in the form $y = ab^x$ whose graph passes through the points

write an exponential function in the form
$$y = ab$$
 whose graph passes through the points

$$(2,12.5) \text{ and } (4,312.5).$$

$$(2,12.5) \text{ and } (4,312.5).$$

$$(3,12.5) = ab^4$$

$$(3$$