Ch 10 Notes

10.1 Notes: Sequences and Summation Notation

Fibonacci Sequence:

An ______ { a_n } is a function whose domain is the set of positive integers. The function values, or terms, of the sequence are represented by

Sequences whose domains consist only of the first n positive integers are called _____

Example 1: Write the first 4 terms of each sequence.

a) $a_n = 2n + 5$ b) $a_n = \frac{(-1)^n}{2^{n+1}}$

Recursion Formula:

Example 2) Find the first 4 terms of the sequence in which $a_1 = 3$, $a_n = 2a_{n-1} + 5$, for $n \ge 2$.

Factorial Notation:

Example 3: Write the first 4 terms of $a_n = \frac{20}{(n+1)!}$.

Ch 10 Notes

Example 4: Evaluate each factorial expression:

a)
$$\frac{14!}{2!12!}$$
 b) $\frac{n!}{(n-1)!}$ c) $\frac{(n+2)!}{n+2}$

Summation Notation:

$$\sum_{i=1}^n a_i$$

Example 5: Expand and evaluate each series.

a)
$$\sum_{i=1}^{6} 2i^2$$

b)
$$\sum_{k=3}^{5} (2^k - 3)$$

c)
$$\sum_{i=1}^{5} 4^{i}$$

Example 6: Express each sum using summation notation: a) $1^2 + 2^2 + 3^2 + \dots + 9^2$ b) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}}$

c) $25 + 50 + 75 + \ldots + 250$

d) $a + (a + d) + (a + 2d) + \dots + (a + nd)$

Ch 10 Notes

10.2 Notes: Arithmetic Sequences

Arithmetic sequence:

What is a **common difference**?

Examples: Write the first six terms of each arithmetic sequence.

1) $a_1 = 6$ and $a_n = a_{n-1} - 2$

2) $a_1 = 100$ and $a_n = a_{n-1} + 30$

General term of an Arithmetic Sequence (also called "explicit form")

Examples:

3) Find the ninth terms of the arithmetic sequence with a first term of 6 and a common difference of -5.

4) Find the eighth term of the arithmetic sequence with a first term of 4 and a common difference of $\frac{7}{2}$.

Ch 10 Notes

Example 5) Teachers in the US earned an average of \$44,600 in 2002. This amount has increased by approximately \$1130 per year.

a) Write a formula for the *n*th term of the arithmetic sequence that describes teachers' average earnings n years after 2001.

b) How much will US teachers earn, on average, by the year 2025?

Example 6) Americans are eating more meals behind the wheel. In 2004, we averaged 32 a la car meals per year, which is increasing by approximately 0.7 meal per year.

a) Write a formula for the *n*th term of the arithmetic sequence that models the average number of car meals n years after 2003.

b) How many car meals will Americans average by the year 2023?

Sum of the First *n* Terms of an Arithmetic Sequence:

 $S_n = \frac{n}{2}(a_1 + a_n)$

 a_1 is the first term a_n is the *n*th term

Example 7) Find the sum of the first 100 terms of the arithmetic sequence: 1, 3, 5, 7, ...

Example 8) Find the sum of the first 15 terms of the arithmetic sequence: 3, 6, 9, 12,

Ch 10 Notes

Example 9) Find the following sum: $\sum_{i=1}^{25} (5i - 9)$

Example 10) Find the following sum: $\sum_{i=1}^{30} (6i - 11)$

Example 11) Your grandmother has assets of \$500,000. One option that she is considering involves an adult residential community for a six-year period beginning in 2009. The model $a_n = 1800n + 64130$ describes yearly adult residential community costs *n* years after 2008.

a) Does your grandmother have enough to pay for the facility for six years?

b) How much would it cost for the adult residential community for a ten-year period beginning in 2009?

Ch 10 Notes

10.3 Notes: Geometric Sequences

A sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant. The amount by which we multiply each time is called the common ratio (r) of the sequence.

Example 1) Write the first six terms of the geometric sequence with first term of 12 and a common ratio of $\frac{1}{2}$.

General term of a Geometric Sequence: $a_n = a_1(r)^{n-1}$ note: $(r \neq 1)$

Examples:

2) Find the eighth term of the geometric sequence whose first term is -4 and whose common ratio is -2.

3) Find the seventh term of the geometric sequence whose first term is 5 and whose common ratio is $\frac{1}{2}$.

4) Write the general term for the geometric sequence 3, 6, 12, 24, 48, ... Then use the formula for the general term to find the 12^{th} term.

Math 127	Ch 10 Notes		Sequences and Series
Sum of the First <i>n</i> Terms of	of a Geometric Sequence:	$S_n = \frac{a_1(1-r^n)}{1-r}$	note: $(r \neq 1)$
For Examples 5 – 8, find tl 5) Find the sum of the first 1	he requested sum. 18 terms of the geometric sequ	uence: 2, -8, 32, -128,	
6) Find the sum of the first r	nine terms of the geometric sec	quence: $300, 100, \frac{100}{3}, \frac{100}{9}$,
7) Find the following sum:	$\sum_{i=1}^{10} 6 \cdot 2^i$		
8) Find the following sum:	$\sum_{i=1}^{8} 2 \cdot 3^i$		

Computing a Lifetime Salary: 9) A job pays a salary of \$30,000 the first year. During the next 29 years, the salary increases by 6% each year. What is the total lifetime salary over the 30-year period?

Ch 10 Notes

What is an annuity?

Annuity Formula:
$$A = \frac{P\left[\left(1+\frac{r}{n}\right)^{nt}-1\right]}{\frac{r}{n}}$$

Example 10) At age 30, to save for retirement, you decide to deposit \$100 at the end of each month into an IRA that pays 9.5% compounded monthly.

a) How much will you have from the IRA when you retire at age 65?

b) Find the amount of interest earned.

Sum of an Infinite Geometric Series: If -1 < r < 1, then the sum of the infinite geometric series is given by $S = \frac{a_1}{1-r}$

Exploration: What if $|r| \ge 1$? Would the infinite series have a sum? Explain.

Example 11) Find the sum of the infinite geometric series: $\frac{3}{8} - \frac{3}{16} + \frac{3}{32} - \frac{3}{64} + \cdots$

Example 12) Find the sum of the infinite geometric series: $3 + 2 + \frac{4}{3} + \frac{8}{9}$...

Example 13) Express $0.\overline{8}$ as a fraction in lowest terms.

10.5 Notes: The Binomial Theorem		
Combination: ${}_{n}C_{r}$ or $\binom{n}{r} = \frac{n!}{r!(n-r)!}$	Note: for non-negative	e integers n and r , with $n \ge r$.
Examples 1 – 4: Evaluate each combination:		
$1. \binom{6}{4} \qquad \qquad 2. \binom{6}{0}$	3. $\binom{8}{2}$	4. $\binom{3}{3}$
On the calculator:		
	1	$\widehat{}$
Pascal's Triangle:	Ĺ	Σ
	\sim	$\forall \Delta$
	Â	uun –
	α	
ί		
Binomial Expansion:		
Examples 1 – 3: Expand each binomial. 1) $(x + 2)^2$ 2) $(x - 5)$	2	3) $(4m + 3n)^2$

Ch 10 Notes

Math 127

9

Sequences and Series

Ch 10 Notes

Sequences and Series

Exploration: Fill in the following table. *Hint: to expand $(x + y)^3$, you can multiply $(x + y)^2$ by $(x + y)^1$.

Binomial	Expansion
$(x+y)^0$	
$(x + y)^1$	
$(x+y)^2$	
$(x+y)^3$	
$(x+y)^4$	
$(x + y)^5$	

• Write conjectures about the number of terms and about symmetry in the terms of the expansion in any row of the table. Verify your conjectures by filling in the row that would follow.

• Compare your expansions and Pascal's Triangle. Write down your observations below.

• Use the pattern you saw to expand $(x + y)^{10}$.

Ch 10 Notes

Examples 4 – 6: Expand the following binomials. 4) $(x + 2)^4$

5) $(x - 2y)^5$

6) $(3x + 2y)^5$

Binomial Coefficient: Combinations can be used to find the coefficients for each term when a binomial is expanded. These same values can also be found in Pascal's Triangle.

Finding a particular term in a Binomial Expansion:

The $(r + 1)^{st}$ term of the expansion of $(a + b)^n = {n \choose r} a^{n-r} b^r$

Examples 7 – 8: Find the indicated term in each expansion. 7) 5th term of $(2x + y)^9$ 8) 7th term of $(x - 2)^{10}$