Unit 4 Part I Notes

4.0 Notes: Review of Special Right Triangles

For #1 - 12, find the length of each missing side for each special right triangle.

Math 126	Unit 4 Part I Notes	Trig and The Unit Circle
Right Triangle Trigonometry	$S\frac{o}{h} C\frac{a}{h} T\frac{o}{a}$	
For #13 – 21, fi	and the requested trig ratio by using special right triangle	es. Do NOT use a calculator.
13) sin 30	14) cos 30	5) tan 30
16) sin 60	17) cos 60	8) tan 60
19) sin 45	20) cos 45	21) tan 45
Examine your so?	results for #13 and #17, as well as for #14 and #16. What	do you notice? Why would this be
Exam your res	ults for #15 and #18. What do you notice? Why is this hap	opening?

4.1 Notes: Angles and Radian Measure

Example 1: A central angle θ in a circle of radius 12ft intercepts an arc of length 42ft. What is the radian measure of θ ?

For Examples 2 – 4: Convert each angle measurement from degrees to radians. Also, sketch the terminal ray for each angle.

For Examples 5 – 7: Convert each angle measurement from radians to degrees. Also, sketch the terminal ray for each angle.

For #14 – 19: Assume the following angles are in standard position. Find a positive angle less than 360° or 2π that is coterminal with each of the following:

14)
$$\frac{13\pi}{6}$$
 15) $-\frac{2\pi}{3}$ 16) 400°
17) -135° 18) $\frac{17\pi}{3}$ 19) -885°

5

Math 126	Unit 4 Part I Notes	Trig and The Unit Circle
	To find the length of an arc with a central an	ngle of θ , use one of the following formulas.
Ana Longth	In Degrees:	In Radians:
Arc Length	$l = \frac{\theta}{360} \cdot 2\pi r$	$l = \frac{\theta}{2\pi} \cdot 2\pi r = \theta r$

Example 20: A circle has a radius of 6 inches. Find the length of the arc intercepted by a central angle of 45° . Also express this arc length in terms of π . Then round your answer to two decimal places.

Math 126Unit 4 Part I Notes4.3 Notes: Right Triangle Trigonometry

Right Triangle Trigonometry			
Basic Trig Functions	$S\frac{o}{h} C\frac{a}{h} T\frac{o}{a}$ $\sin \theta =$ $\cos \theta =$ $\tan \theta =$		
	$\csc \theta =$		
Reciprocal Trig Functions	$\sec \theta =$		
	$\cot heta =$		

Example 1: Find the requested ratios for the triangle shown. Simplify your answer.

Unit 4 Part I Notes

Trig and The Unit Circle

Review: Consider the circle. Label the angle measurements for all multiples of $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, and $\frac{\pi}{2}$. Also, include the label measurements for each angle in degrees.

Example 3: Use the special triangles below to find the requested trig values in the table below.

	45 – 45 – 90 Triangles	30 – 60 – 90 Triangles
Special Right Triangles		60° 30°

θ	$30^{\circ} = \frac{\pi}{6}$	$45^{\circ} = \frac{\pi}{4}$	$60^{\circ} = \frac{\pi}{3}$
sin θ			
cos θ			
tan θ			

Draw conclusions about trig functions of complementary angles. (Complementary angles have a sum of 90° or $\frac{\pi}{2}$.)

Math 126	Unit 4	Part I Notes Trig and The Unit Circle
	Definition	Specifics
Cofunctions	The cofunction of an angle is the trigonometric function of the angle's that produces the same value to another trig function of the original angle.	Using Degree Measure $ \begin{aligned} & \text{Using Degree Measure} \\ & \text{Using Particle Section } \\ & Usi$

Examples 4 - 6: Find a cofunction with the same value as the given expression.

4) $\sin 46^{\circ}$ 5) $\cot \frac{\pi}{4}$ 6) $\sec \frac{\pi}{3}$

	Finding a Side	Finding an Angle
Solving Trigonometric	1) Use two sides and one angle to identify a trig function to use.	1) Use two sides and one angle to identify a trig function to use.
Equations with Right Triangles	2) Set up an equation in the form below:trig function (angle) = ratio	2) Set up an equation in the form below:trig function (angle) = ratio
	3) Use algebra to isolate the variable.	3) Use an inverse trig function to isolate the variable.

Example 7) A surveyor is standing 115 ft from the base of the Washington Monument. The surveyor measures the angle of elevation to the top of the monument as 78.3°. How tall is the Washington Monument? If needed, round to 3 decimal places.

Unit 4 Part I Notes

Trig and The Unit Circle

Example 8) A flagpole that is 14 meters tall casts a shadow 10 meters long. Find the angle of elevation of the sun to the nearest degree.

Example 9) A bird is on the street outside of the Empire State Building. The angle of elevation from the bird to the top of the 86th floor is 82°. If the 86th floor is at a height of 320 feet, then how far away is the bird to the 86th floor of the Empire State Building? Round to 2 decimal places.

Math 126Unit 4 Part I Notes4.2 Part 1 Notes: The Unit Circle

Trig and The Unit Circle

Exploration A: Consider a 30 - 60 - 90 triangle with a hypotenuse of 1.

- Find the length of each leg.
 - $\circ x =$

 $\circ y =$

•

- Find the following ratios:
 - \circ sin 30

 $\circ \cos 30$

- \circ sin 60
- cos 60

Exploration B: Consider a 45 - 45 - 90 triangle with a hypotenuse of 1.

- Find the length of each leg.
 - $\circ x =$
 - *y* =
- Find the following ratios: • sin 45
 - \circ cos 45

Exploration C: Consider a circle with a radius of 1, as shown.

- Find the coordinates of point A.
- Compare these values with the sine and cosine of 30°. What do you notice?

Exploration D: Consider a circle with a radius of 1, as shown.

- Find the coordinates of point B.
- Compare these values with the sine and cosine of 45°. What do you notice?

For #1 - 15: Use the unit circle to find the exact value of each trig function at the indicated real number, or state the expression is undefined. No calculator allowed.

Math 126Unit 4 Part I NotesTrig and The Unit CircleFor examples 16 – 18, find the value of all six trig functions with the given information about a point or
angle on the unit circle.

16) Given point
$$P\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$
. 17) Given $\theta = \pi$.

18) Given point $P\left(-\frac{8}{17}, \frac{15}{17}\right)$.

Practice filling out the unit circle for degrees and radians. You will have a quiz on this next class!

For Examples 1 – 3: Use odd and even functions to find the value of each trig function. 1) $\sin\left(-\frac{\pi}{4}\right)$ 2) $\sec\left(-\frac{\pi}{4}\right)$ 3) $\tan\left(-\frac{\pi}{3}\right)$

15

Unit 4 Part I Notes

Math 126 Examples:

4) Given that sin t = $\frac{2}{3}$ and cos t = $\frac{\sqrt{5}}{3}$, find the values of each of the four remaining trig functions.

5) Given that sin t = $\frac{1}{2}$ and $0 \le t \le \frac{\pi}{2}$, find the value of cos t by using a trig identity.

Periodic Properties

The period of a function is the smallest number that can be added to the function while still keeping it the same. For sine and cosine (and their reciprocals), the period is 2π . For tangent and cotangent, the period is π .

Periodic Properties show that values stay the same when the period is added to the argument of a trig function. $\sin(\theta + 2\pi) = \sin\theta \qquad \csc(\theta + 2\pi) = \csc\theta$ $\cos(\theta + 2\pi) = \cos\theta \qquad \sec(\theta + 2\pi) = \sec\theta$ $\tan(\theta + \pi) = \tan\theta \qquad \cot(\theta + \pi) = \cot\theta$

For Examples 6 – 8: Find the value of each trig function using periodic properties. 6) $\cot \frac{5\pi}{4}$ 7) $\cos \left(-\frac{9\pi}{4}\right)$ 8) $\sin \frac{14\pi}{3}$

Math 126 Unit 4 Part I Notes 4.4 Notes: Trigonometric Functions of Any Angle

Trig and The Unit Circle

Exploration A: Let P(2, -3) be a point on the terminal side of θ . Find each of the six trig functions of θ .

$\sin \theta =$	$\csc \theta =$
$\cos \theta =$	$\sec\theta =$
$\tan \theta =$	$\cot \theta =$

Exploration B: Let P(-3, -5) be a point on the terminal side of θ . Find each of the six trig functions.

-	
	x

$\sin\theta =$	$\csc \theta =$
$\cos \theta =$	$\sec \theta =$
$\tan \theta =$	$\cot \theta =$

Signs of Trig Functions	Quadrantal Angles	
The sign of a trig function depends on the quadrant	A quadrantal angle is an angle whose terminal side is	
that the terminal side lands in.	on either the <i>x</i> - or <i>y</i> -axis.	
▲	▲	
\leftarrow	← → →	
↓ ↓	↓	
France 1. Find the sin 0 and ten 0 at the form me downted analysis is to deduce		

c. $\theta = \pi$

Example 1: Find the sin θ , cos θ , and tan θ at the four quadrantal angles listed below. b. $\theta = \frac{\pi}{2}$

a. $\theta = 0^{\circ}$

17

d. $\theta = \frac{3\pi}{2}$

Unit 4 Part I Notes

For Examples 2 – 3, use the given information to identify the quadrant for θ . 2) $\sin \theta < 0$ and $\cos \theta < 0$ 3) $\tan \theta < 0$ and $\cos \theta > 0$

Examples 3 – 5: Use the given information to find the requested trig functions.

3) Given $\tan \theta = -\frac{1}{3}$ and $\cos \theta < 0$, find $\sin \theta$ and $\sec \theta$.

4) Given $\cos \theta = \frac{1}{2}$ and $\csc \theta < 0$, find $\tan \theta$ and $\csc \theta$.

5) Given $\tan \theta = -\frac{4}{3}$ and $\sin \theta > 0$, find $\csc \theta$ and $\cos \theta$.

Math 126	Unit 4 Part I Notes	Trig and The Unit Circle
For Examples 6 – 11: Find 6) $\theta = 210^{\circ}$	the reference angle $\hat{\theta}$ for each given angle 7) $\theta = \frac{7\pi}{4}$	le. 8) 580°
9) $\theta = \frac{-11\pi}{3}$	10) $\theta = \frac{15\pi}{4}$	11) $\theta = \frac{5\pi}{6}$
For #12 – 15: Use reference 12) sin 300°	e angles to find each requested value with 13) sec $\left(-\frac{\pi}{6}\right)$	out using a calculator.

14)
$$\cos\left(\frac{17\pi}{6}\right)$$
 15) $\sin\left(-\frac{22\pi}{3}\right)$