## 4.1 Notes: Angles in Triangles

**Triangle Sum Theorem:** The sum of the angles in any triangle is \_\_\_\_\_\_. (You may use the name of this theorem in a proof.)



#### Exterior Angle Theorem: Work to understand this!!!

The measure of the exterior angle of a triangle is equal to the \_\_\_\_\_\_ of the two remote interior angles. (You may use the name of this theorem in a proof.)



Triangle Sum Corollaries: You must write out these statements in a proof.

- The acute angles of a right triangle are \_\_\_\_\_\_.
- There can be at most \_\_\_\_\_\_ right or obtuse angle in a triangle.



## 4.2 Notes: Introduction to Congruent Triangles

**Definition of Congruent Polygons:** Two polygons are congruent *if and only if* their \_\_\_\_\_\_ parts are congruent.

#### **Congruence Statement:**

**Theorem: CPCTC:** Corresponding Parts of Congruent Triangles are Congruent. If two triangles are \_\_\_\_\_\_, then all six pairs of corresponding parts are also \_\_\_\_\_\_.

Η

(Note: when using this theorem in a proof, you may use the acronym CPCTC.)

Do the 4.2 Proofs in the Proofs Packet.

**Example 2:** If  $\triangle ABC \cong \triangle DEF$ , AB = 7, BC = 9, AC = 11 + x, DF = 3x - 13, and DE = 2y - 5, then find *x* and *y*.

**Third Angle Theorem:** If 2 angles of one triangle are \_\_\_\_\_\_ to 2 angles of another  $\Delta$ , then the 3<sup>rd</sup> angles of the triangles are \_\_\_\_\_\_. (Note: You may use the name of this theorem in a proof.)

**Example 3:** Find *x*.

36 84<sup>°</sup> 0 3*x* 0 36

**Example 4:** Find x + 3y.



# 4.3: Proving Triangles Congruent by using SSS and SAS

Side-side (SSS) Congruence Postulate

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

=c Rt

| Side-Angle-Side (SAS)<br>Congruence Postulate                                                                                                                                 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| If two sides and the included angle<br>of one triangle are congruent to<br>two sides and the included angle<br>of a second triangle, then the two<br>triangles are congruent. | A S |
| If Side $\overline{AB} \cong \overline{RS}$<br>Angle $\angle A \cong \angle R$<br>Side $\overline{CA} \cong \overline{TR}$<br>Then $\Delta ABC \cong \Delta RST$              | R   |

### Examples: Are the triangles congruent? If so, by what theorem?

2)

3)

4)

Now complete the 4.3 Proofs in the Proofs Packet.

# 4.4: Proving Triangles Congruent by using ASA and AAS

Angle-Side-Angle (ASA) Congruence

• If 2 <s and <u>the included side</u> of one  $\Delta$ are  $\simeq$  to two <s <u>and the included side</u> of a 2<sup>nd</sup>  $\Delta$ , then the  $\Delta$ s are  $\simeq$ .

Angle-Angle-Side (AAS) Congruence

 If 2 <s and the non-included side of one Δ are ≈ to the <u>corresponding</u> two <s and side of a 2<sup>nd</sup> Δ, then the Δs are ≈.

### We have 5 ways to prove congruent triangles:

- 1. Side Side Side (SSS)
- 2. Side Angle Side (SAS)
- 3. Angle Side Angle (ASA)
- 4. Angle Angle Side (AAS)
- 5. One more coming next class...

Examples: Are the triangles congruent? If so, by what theorem?

1)

2)

3)

4)