Ch 5 Notes

Ch 5 Extra Topics Notes

Topic #1: Partitioning a line segment.

Example 1: Given a directed line segment from A (-2, 8) to B (-2, 0). Point P partitions AB in the ratio of 1:3. Find the coordinates of P.

Example 2: Given a directed line segment from A (-1, 7) to B (6, 7). Point P partitions AB in the ratio of 2:5. Find the coordinates of P.

Example 3: Given a directed line segment from A (9, -3) to B (-1, 2). Point P partitions AB in the ratio of 3:2. Find the coordinates of P.

Example 4: Given a directed line segment from B to A if A (4, -5) and B(-3, -1). Point P partitions AB in the ratio of 5:3. Find the coordinates of P.

Ch 5 Notes

Example 6: An 80 mile trip is represented on a gridded map by a directed line segment from point M(3, 2) to point N(9, 14). What point represents 70 miles into the trip? Round your answers to the nearest tenth.

Topic #2: Distance between a line and a point.

Example 7: Write the equation of the line (in slope-intercept form) that models the distance between the origin and the line y = -2x + 8.

Example 8: Write the equation of the line (in slope-intercept form) that models the distance between (-9, -2) and the line y = 3x.

Formal Geometry	Ch 5 Notes	2021			
Definition:	An angle bisector is a ray that divides and angle into congruent angles.				
• Angle Bisec of the angle.	tor Theorem: If a point is on the bisector of an angle, then it is equidistant from the	sides			
Converse of the Angle Bisector Theorem: If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.					
Example 4: Find	MK. Example 5: Find $m \angle EWL$				
M $2x + 1$ $3x$	$(7x+5)^{\circ}W(3x+21)^{\circ}$ E				
Example 6: On the graph below, $\angle PQR$ is reflected over \overleftarrow{QR} so that \overleftarrow{QR} is an angle bisector of PQP' . What are the coordinates of P' ? Explain your reasoning.					
		4			

Ch 5 Notes

2021

More Special Segments:

Definition of altitude: If a segment is an altitude, then is extends from a vertex of a triangle and is perpendicular to the line containing the opposite side.

□ **Definition of median:** If a segment is a median, then it extends from a vertex of a triangle to the midpoint of the opposite side.

y

А

в

E

The shortest distance between a point and a line is a ______ segment. Thus, an

_____ is always shorter than a ______ (unless they are the same segment.)

Example 7: Given Δ*ABC* with A (-5, -4), B (1, 0), and C (0, -5). a) Find the coordinates of D if BD is an altitude.

- b) Find the length of BD.
- c) Find the coordinates of E if BE is a median.

d) Find the length of BE. Which is shorter, the altitude from B, or the median from B?

f) Find the coordinates of F if CF is an altitude.

> x

Centroid: The point in a triangle where all the medians of a triangle intersect.

• **Centroid Theorem:** If a point is a centroid, then it is $\frac{2}{3}$ of the distance from the vertex to the midpoint of the opposite side.

$$\circ \quad QV = \frac{2}{3}QU; \qquad PV = \frac{2}{3}PT; \qquad RV = \frac{2}{3}RS$$

Example 9: In $\triangle MIV$, Z is the centroid, MZ = 6, YI = 18, and NZ = 10. Find each measure.

M

R

Ch 5 Notes

If-time extension:

Theorem: If a triangle is isosceles, then the altitude of the triangle is also the median of a triangle. (note: the converse of this theorem is also true.) Λ

Complete the proof of this theorem below.

Ex 3: Given: $\triangle ABC$ is isosceles with base \overline{BC} \overline{AD} is an altitude

Prove: \overline{AD} is a median

Statements	Reasons
1) $\triangle ABC$ is isosceles with base \overline{BC} ; \overline{AD} is an altitude	1) Given
2) $\overline{AB} \cong \overline{AC}$	2)
3) $\overline{AD} \perp \overline{BC}$	3)
4) $\angle 1$ and $\angle 2$ are right angles.	4)
5) $\overline{AD} \cong \overline{AD}$	5)
6) $\triangle ABD \cong \triangle ACD$	6)
7) $\overline{BD} \cong \overline{DC}$	7)
8) D is the midpoint of \overline{BC} .	8)
9) \overline{AD} is a median.	9)

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is ______ than the side opposite the smaller angle.

Ch 5 Notes

Example 3: Identify any angles that are smaller than <1.

2021

Example 4: List the sides from shortest to longest.

T 98° S U 43°

Example 5: Write an inequality comparing the measures of <RWQ and <QRW.

Example 6: Which is the shortest side in the diagram shown below?

Formal Geometry	Ch 5 Notes	2021			
5.5 Guided Notes: The Triangle Inequality					
Example 7: Use the side lengths given create a triangle? Explain your conclust	to your group to create a triangle. Can any the ion.	nree side lengths be used to			
• Theorem: The sum of the lengths of the third side	s of any two sides of a triangle must be	than the length			
Example 8: Is it possible to form a triang a.) 4 mm, 7mm, 12 mm	le with the given side lengths? If not, explain why b.) 13 in, 15 in, 28 in	/ not.			
Example 9: Find the range for the mea a) 12 yds , 15 yds.	usure of the third side of a triangle given the m b) 6 cm, 6 cm	easures of two sides.			
Example 10: Find the range of possible sides of a triangle.	e measures of x if each set of expressions repr $3x + 2$, $x + 4$, $x + 6$	resents measures of the			

Ch 5 Notes

5.4 Notes: Indirect Proofs

What is an indirect proof?

Steps for completing an indirect proof:

- 1. List the possibilities for the conclusion
- 2. Assume that the negation of the desired conclusion is correct.
- 3. Write a chain of reasons until you reach an impossibility.
- This will be a contradiction of either
 - Given information or
 - $\circ ~~$ a theorem, definition, or other known fact.
- 4. State the remaining possibility as the desired conclusion.

Example 1: State the assumption you would make to start an indirect proof of each statement.

a. Given: $\overline{MO} \cong \overline{ON}, \overline{MP} \cong \overline{NP}$ Prove: $\angle MOP \cong \angle NOP$ b. Given: $\angle ADB$ is acute. Prove: $AB \cong BC$

Example 2: Write an indirect proof.

Given: $\overline{MO} \cong \overline{ON}, \overline{MP} \ncong \overline{NP}$

Prove: $\angle MOP \cong \angle NOP$

Example 4: Given: \overrightarrow{BD} bisects $\angle ABC$, $\angle ADB$ is acute.

Prove: $\overline{\text{AB}} \cong \overline{\text{BC}}$

Example 5: Given: $\angle H \cong \angle K$.

Prove: $\overline{JH} \cong \overline{JK}$

5.6 Notes: The Hinge Theorem

The Hinge Theorem:

• If 2 sides of a Δ are \cong to 2 sides of another Δ , and the included \angle of the first Δ is larger than the included \angle of the second Δ , then the third side of the first Δ is longer than the third side of the second Δ .

The Converse of the Hinge Theorem:

• If 2 sides of a Δ are \cong to 2 sides of another Δ , and the third side of the first Δ is longer than the third side of the second Δ , then the included \angle of the first Δ is larger than the included \angle of the second Δ .

Ch 5 Notes

Examples: For each example, find the range of values on the variable.

14

Example 6: Given: $\overline{AC} \perp \overline{BD}, \overline{BC} \cong \overline{EC}, \overline{AB} \ncong \overline{ED}$ **Prove**: $\angle B \ncong \angle CED$

