9.0 Notes: Introduction to Conics $\begin{array}{c c} \hline y \\ y \\ y \\ y \\ z \\ z \\ z \\ z \\ z \\ z \\$
Type of Conic and Standard FormKey Features and Basic Hints (We will learn more details about graphing conics this unit)CircleCenter = (h, k) Radius = r $(x - h)^2 + (y - k)^2 = r^2$ The circle is r units from the center in all directionsEllipseCenter = (h, k)
Type of Conic and Standard FormKey Features and Basic Hints (We will learn more details about graphing conics this unit)CircleCenter = (h, k) Radius = r $(x - h)^2 + (y - k)^2 = r^2$ The circle is r units from the center in all directionsEllipseCenter = (h, k) Axes length = $2a$ and $2b$ Major axis: the longer axis Minor axis: the shorter axis $\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1$ The endpoints of the horizontal axis are $\pm a$ units left and right from the center The endpoints of the vertical axis are $\pm b$ units up and down from the center Center = (h, k)
CircleCenter = (h, k) Radius = r $(x - h)^2 + (y - k)^2 = r^2$ Center is r units from the center in all directionsEllipseCenter = (h, k) Axes length = $2a$ and $2b$ Major axis: the longer axis Minor axis: the shorter axis $\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1$ The endpoints of the horizontal axis are $\pm a$ units left and right from the center The endpoints of the vertical axis are $\pm b$ units up and down from the center Center = (h, k)
CircleCenter = (h, k) Radius = r $(x-h)^2 + (y-k)^2 = r^2$ The circle is r units from the center in all directionsEllipseCenter = (h, k) Axes length = $2a$ and $2b$ Major axis: the longer axis Minor axis: the shorter axis $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ The endpoints of the horizontal axis are $\pm a$ units left and right from the center The endpoints of the vertical axis are $\pm b$ units up and down from the center Center = (h, k)
Kaddus = 7 $(x-h)^2 + (y-k)^2 = r^2$ The circle is r units from the center in all directionsEllipseCenter = (h, k) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ Major axis: the longer axisThe endpoints of the horizontal axis are $\pm a$ units left and right from the centerThe endpoints of the vertical axis are $\pm b$ units up and down from the center
$(x-h)^2 + (y-k)^2 = r^2$ The circle is r units from the center in all directionsEllipseCenter = (h,k) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ Major axis: the longer axisThe endpoints of the horizontal axis are $\pm a$ units left and right from the center The endpoints of the vertical axis are $\pm b$ units up and down from the center Center = (h,k)
EllipseCenter = (h, k) $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ Major axis: the longer axis Minor axis: the shorter axisThe endpoints of the horizontal axis are $\pm a$ units left and right from the center The endpoints of the vertical axis are $\pm b$ units up and down from the center Center = (h, k)
$\frac{a^2 + b^2 - 1}{b^2}$ The endpoints of the horizontal axis are $\pm a$ units left and right from the center The endpoints of the vertical axis are $\pm b$ units up and down from the center Center = (h, k)
Center = (h, k)
Hyperbola (opens horizontally)the transverse axis is parallel to the x-axis the coordinates of the vertices are $(h \pm a, k)$ the coordinates of the co-vertices are $(h, k \pm b)$ $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Draw a rectangle that includes the vertices and co-vertices; draw asymptotes at diagonals of the rectangle. Use the vertices and the asymptotes to draw the horizontal hyperbola.
Center = (h, k)
Hyperbola (opens vertically)the transverse axis is parallel to the x-axis the coordinates of the vertices are $(h \pm a, k)$ the coordinates of the co-vertices are $(h, k \pm b)$ $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ Draw a rectangle that includes the vertices and co-vertices; draw asymptotes a diagonals of the rectangle. Use the vertices and the asymptotes to draw the horizontal hyperbola.
Parabola: vertex form
(opens vertically) (opens vertically)
$y = a(x-h)^2 + k$ Use $\frac{a}{1}$ as $\frac{rise}{run}$ to plot one point on either side of the vertex.
Parabola: vertex form (opens horizontally)Vertex (h, k)
$x = a(y-k)^2 + h$ Use $\frac{a}{1}$ as $\frac{run}{rise}$ to plot one point on either side of the vertex.

Ch 9 Notes

Conics

9.0 Notes, continued.

For Examples 1 – 4, identify the type of conic section represented, convert to Standard Form, and then graph each conic. 1) $4x^2 + 4y^2 = 64$

*If $a^2 > b^2$, then the major axis is horizontal.

*If $b^2 > a^2$, then the major axis is vertical.

Foci of an Ellipse

_	
Location	Foci Formula
• on the major axis	$b^2 = a^2 - c^2$
• <i>c</i> units from the center in 2 directions	$c^2 = a^2 - b^2$

Example 1: Graph the following and locate the foci:

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

a width of 12 feet and a height of 9 feet. Will your truck clear the opening of the archway?

An exploration with ellipses: <u>https://www.geogebra.org/m/CrVpc8pP</u>

Ch 9 Notes

Conics

9.2 Notes: Hyperbolas

A hyperbola is the set of all points in a plane whose difference from two fixed points, called foci, is constant.

- **Vertices:** Two points that are intersected by • a line segment that joins the foci
- **Transverse axis:** The line segment that joins the vertices

Standard Form of a Hyperbola

	Centered at the origin	Centered at (<i>h</i> , <i>k</i>)	Transverse Axis	Asymptotes
Opens	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$		Slope $m = \pm \frac{\text{rise}}{\text{run}}$
horizontally	Center:	Center:		Centered at origin: $y = \pm mx$
Opens vertically	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ Center:	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ Center:		Centered at (h, k) : $y = \pm m(x - h) + k$

Foci of a Hyperbola

Location	Foci Formula
 on the transverse axis <i>c</i> units from the center in two directions 	$c^2 = a^2 + b^2$

Examples 1 – 2: Find the vertices and locate the foci: $1)\frac{x^2}{25} - \frac{y^2}{16} = 1$

$$2)\frac{y^2}{25} - \frac{x^2}{16} = 1$$

Math 127 9.2 Notes, continued.

Ch 9 Notes

For #6 – 8: Graph each hyperbola and find the requested information.

$$6) \ \frac{x^2}{36} - \frac{y^2}{9} = 1$$

Coordinates of foci	
Equations of asymptotes	

7)
$$y^2 - 4x^2 = 4$$

Coordinates of foci	
Equations of asymptotes	

$$8)\frac{(x-3)^2}{49} - \frac{(y-1)^2}{25} = 1$$

Coordinates of foci	
Equations of asymptotes	

Math 127 9.3 Notes: Parabolas

Ch 9 Notes

Conics

A *parabola* is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed point (the focus).

In previous classes, you have explored the vertex form of a parabola:

Parabola: vertex form (opens vertically)	Parabola: vertex form (opens horizontally)
$y = a(x-h)^2 + k$	$x = a(y-k)^2 + h$

Standard Form of a Parabola

	Centered at the origin	Centered at (<i>h</i> , <i>k</i>)	Focus	Directrix
Opens horizontally	$y^2 = 4px$ Center:	$(y - k)^2 = 4p(x - h)$ Center:		
right:				
left:				
Opens	$x^2 = 4py$	$(x-h)^2 = 4p(y-k)$		
vertically	Center:	Center:		
up:				
down:				

Latus Rectum of a Parabola

Description	Length Formula
• Line segment that connects two	The length of the latus rectum is $ 4p $.
points on the parabola	
• Is parallel to the directrix	This is helpful to determine the width of
• Passes through the focus	the parabola.
Latus Rectum Major A Vertex Focus	xxis x

Ch 9 Notes

Conics

9.3 Notes, continued.

For #1 – 3: Find the requested information and graph each parabola. Include the latus rectum and directrix. 1) $y^2 = 8x$

Vertex	Focus
Equation of	Length of
directrix	latus rectum

2) $x^2 = -12y$

Vertex	Focus
Equation of	Length of
directrix	latus rectum

3)
$$(x-2)^2 = 4(y+1)$$

Vertex	ertex Focus		
Equation of	Length of		
directrix	latus rectum		

Ch 9 Notes

9.3 Notes, continued.

4) Find the requested information and graph the parabola. Include the latus rectum and directrix.

$$y^2 + 2y + 4x - 7 = 0$$

Vertex	Focus		
Equation of	Length of		
directrix	latus rectum		

For #5-6, write each parabola in standard form with the given information.

5) focus (8, 0) and directrix x = -8

6) focus (0, 20) and directrix y = -20

Ch 9 Notes

9.3 Notes, continued.

For #7 – 8, write each parabola in standard form with the given information.

7) focus (3, 2) and directrix x = 5

8) focus (-3, 4) and directrix y = 6

9) An engineer is designing a flashlight using a parabolic reflecting mirror and a light source. The casting has a diameter of 4 inches and a depth of 3 inches. Assume that the parabola is centered at the vertex and opens upward. What is the equation of the parabola used to shape the mirror? At what point should the light source be placed relative to the mirror's vertex?

Μ	ath 127	Ch 9 Notes	Conics
9	.5 Parametr	ric Equations	
*H <u>ht</u>	Khan Academy V tp://www.khanaca	ideo: ademy.org/math/trigonometry/parametric_equations/parametric/v/parametric_	<u>ric-equations-1</u>
K	ey Terms		
	Parametric Equations		
	Parameter		
	Plane Curve	The set of ordered pairs (x, y) where $x = f(t)$ and $y = g(t)$ for an inter	val I.

Examples:

1) Graph the plane curve defined by the parametric equations below on the interval $-2 \le t \le 2$.

 $x = t^2 - 1; y = 3t$

Ch 9 Notes

Conics

9.5 Notes, continued.

2) Sketch the plane curve represented by the parametric equations $x = \sqrt{t}$ and y = 2t - 1 by eliminating the parameter. Use a table to verify your work.

3) Sketch the plane curve represented by the parametric equations below by eliminating the parameter. Use a table to verify your work. $x = 6 \cos t$; $y = 4 \sin t$ on the interval $\pi \le t \le 2\pi$

5) $y = x^2 - 25$

Ch 9 Notes

For #4 – 5: Find the set of parametric equations for each parabola. 4) $y = 9 - x^2$

Conics