

Name_____

Period_____

Day	Date	Assignment (Due the next class meeting)
		8.1: Simplifying and Multiplying Radicals
		8.2: Graphing Quadratics in Vertex Form
		8.3: Completing the Square
		8.4: Solving by Square Rooting
		Ch 8 Practice Test
		Chapter 8 Test

- Be prepared for daily quizzes.
- Every student is expected to do every assignment for the entire unit.
- Students with 100% HW completion at the end of the semester will be rewarded with a 2% grade increase. Students with no late or missing HW will get a free pizza lunch.

HW reminders:

- > If you cannot solve a problem, get help **before** the assignment is due.
- > Extra Help? <u>Visit www.mathguy.us</u> or <u>www.khanacademy.com</u>.

Do you need a worksheet or a copy of the teacher notes?

Go to www.washoeschools.net/DRHSmath

Algebra 1Ch 8 Notes: Quadratics in Vertex Form8.1 Notes: Simplifying and Multiplying Radicals

Lesson Objectives

- 1. Simplify square roots and cube roots with numbers and variables.
- 2. Multiply two radical expressions.
- 3. Recognize powers of $\frac{1}{2}$ and $\frac{1}{3}$ to be square and cube roots, respectively.

	n	n^2 (Perfect Squares)	n	n^2 (Perfect Squares)	n	n ² (Perfect Squares)
WARM UP Complete table	1		6		11	
without a calculator.	2		7		12	
	3		8		13	
	4		9		14	
	5		10		15	
	n	n ³ (Perfect Cubes)	n	n ³ (Perfect Cubes)		
	1		4			
	2		5			
	3		6			

Examples #1 – 8: Simplify each expression.

1. $\sqrt{49}$	2. $\sqrt{64}$	3. √ 81	4. ∛64
5.∛8	6. 3√ <u>16</u>	7. $-7\sqrt{25}$	8. 5√ <u>36</u>

9. A square television set has an area of 144 square inches. Find the length of one side.

Simplest Form of a Radical Expression: A radical expression is in simplest form if:

a) no perfect squares are factors of the value inside the radical

b) no radicals are in the denominator of a fraction.

Simplifying Radicals

4

Simplifying Radicals with Variables:

Examples 16 – 21: Simplify each radical expression. Assume all variables are positive. 16) $\sqrt{x^5}$ 17) $\sqrt{40x^{11}y^4}$ 18) $-3\sqrt{50b^7}$

You try #19 – 21!		
19) $\sqrt{a^9b^{14}}$	20) $2\sqrt{18x^3y^5}$	21) $\sqrt{36x^4y^{10}}$

Simplifying Cube Roots

Examples 22 – 25: Simp	ify each expression.	
22) $\sqrt[3]{54}$	23) $-10\sqrt[3]{40}$)

You try #24 – 25: 24) $\sqrt[3]{80}$ 25) $15\sqrt[3]{270}$

Challenge: 26) Simplify the expression: $-10a^2b \cdot \sqrt[3]{24a^3b^6}$ Assume all variables are positive.

Special Powers:	$x^{\frac{1}{2}} = \sqrt{x}$	$x^{\frac{1}{3}} = \sqrt[3]{x}$
For Examples 27 – 29, simp 27) $98^{\frac{1}{2}}$	blify each expression. 28) $45^{\frac{1}{2}}$	29) $250^{\frac{1}{3}}$

Multiplying Radicals

For Examples 30 – 35: Sin	mplify each expression.	
30) $\sqrt{3}(2\sqrt{3})$	$31)\sqrt{8\cdot 20}$	$32) - 2\sqrt{10} \cdot 5\sqrt{14}$

You try! 33)
$$\sqrt{35 \cdot 21}$$
 34) $\sqrt{7}(3\sqrt{21})$
 35) $3\sqrt{6} \cdot 4\sqrt{2}$

Challenge! 36) Simplify: $-3x\sqrt{15x^2y^5} \cdot 2x^2y\sqrt{45xy^3}$ Assume all variables are positive.

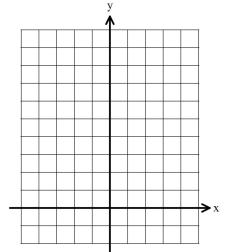
Algebra 1Ch 8 Notes: Quadratics in Vertex Form8.2 Notes: Graphing Quadratics in Vertex Form

Lesson Objectives

- 1. Create a table of values for the parent function $y = x^2$
- 2. Graph quadratic functions in vertex form: $y = a(x h)^2 + k$
- 3. Identify the vertex, domain, range and transformations of quadratic functions.

Quadratic Functions: The Parent Function of the Quadratic is $y = x^2$

x	$y = x^2$
-3	
-2	
-1	
0	
1	
2	
3	



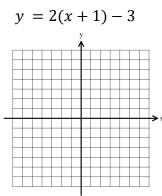
Vertex:

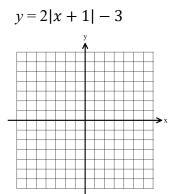
Domain:

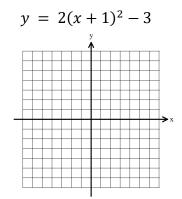
Range:

Max or Min?

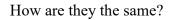
Exploration: Graph the following functions:



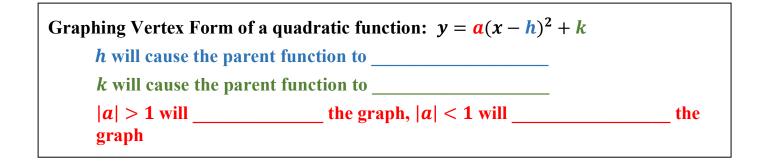




Use DESMOS for this one



How are they different?



Ch 8 Notes: Quadratics in Vertex Form

Example 1: Sketch each quadratic function. Identify the vertex and transformations.

Vertex:

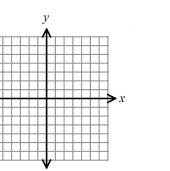
b) $f(x) = x^2 - 3$

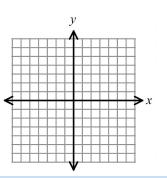
Transformation from $y = x^2$

a) $y = (x - 1)^2$

Vertex:

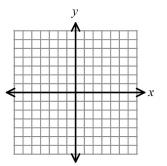
Transformation from $y = x^2$



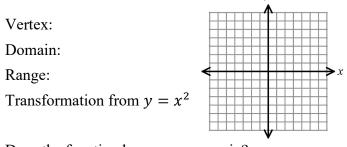


c) $g(x) = (x + 2)^2 + 1$ Vertex:

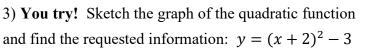
Transformation from $y = x^2$

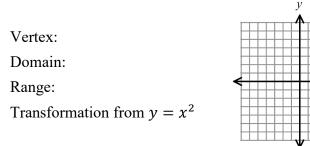


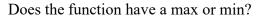
2) Sketch the graph of the quadratic function and find the requested information: $y = x^2 + 3$.



Does the function have a max or min?



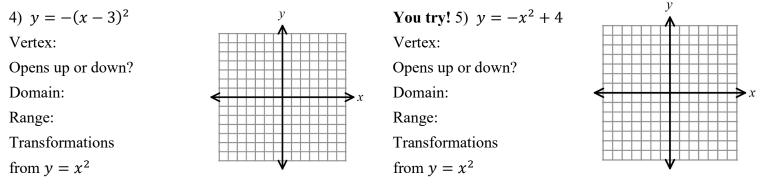




Reflections in the *x***-axis:**

NOTE: Be sure to reflect at the proper time using PEMDAS

Examples #4 – 5: For the quadratic function, sketch the graph, and then find the requested information.



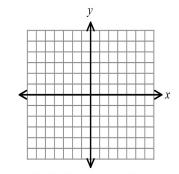
2022-23

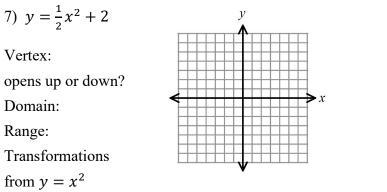
Vertical Stretch/Compression for a Quadratic Function:

Examples 6 – 8: For each quadratic function, sketch the graph, and then find the requested information.

6) $y = 2(x - 3)^2 - 5$ Vertex: Domain: Opens up or down? Range:

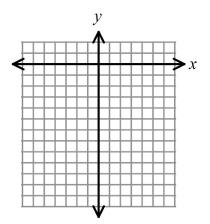
Transformation from $y = x^2$





8) $y = -3(x+2)^2$

Vertex: Opens up or down? Domain: Range: Transformations from $y = x^2$

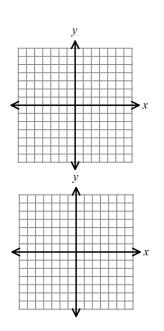


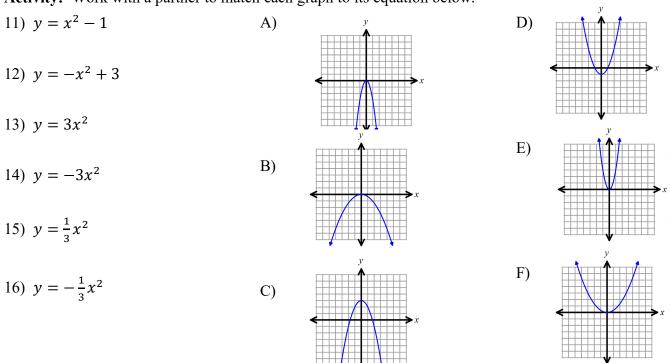
Exploration: DOES ORDER MATTER?

9) If $h(x) = x^2$ is reflected in the *x*-axis and then translated up 2 units, what would be its new graph and equation?

10) If $g(x) = x^2$ translated up 2 units and then is reflected in the *x*-axis, what would be its new graph equation?

Answer the question: Does the order of transformations matter?





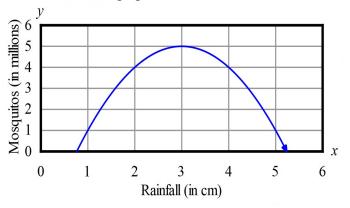
Activity: Work with a partner to match each graph to its equation below.

Examples 17–19: The number of mosquitoes is Anchorage, Alaska (in millions of mosquitoes) is a function of rainfall (in cm) is modeled by $m(x) = -(x-3)^2 + 5$, as shown in the graph below.

17) How many cm of rainfall would result in 4 million mosquitos?

18) What is the maximum number of mosquitos?

19) How many cm of rainfall would result in the maximum number of mosquitos?

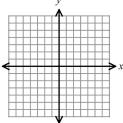


20) Which statement(s) are true for $g(x) = x^2$ after the transformation g(x - 4) is applied? Choose all that apply.

A) g(x) is moved to the left 4 units.

C) g(x) is moved up 4 units.

- E) The domain of the function is all real numbers.
- F) The maximum of the function is 4.
- B) g(x) is moved to the right 4 units.
- D) The range of the function is $y \leq -4$.



G) The minimum of the function is 0.

8.3 Notes: Completing the Square

Lesson Objectives

- 1. Complete the square to make a perfect square trinomial
- 2. Convert quadratic functions to vertex form by completing the square Note: Optional to use x = -b/2a approach should time allow.
- 3. Graph a quadratic function in vertex form and identify the min/max, domain, range, and vertex.

Warm up:

1. Multiply: $(x - 3)^2$

2. Simplify: $(x + 2)^2$

3. Factor: $x^2 + 10x + 25$

4. Factor: $4x^2 - 12x + 9$

Trinomials that are Perfect Squares when factored:

Examples: Find the missing value that would make the trinomial a perfect square. Then factor each trinomial. 1) $x^2 + 6x +$ _____ 2) $x^2 - 10x +$ _____ 3) $x^2 + 8x +$ _____

 $(x)^2$ $(x)^2$ $(x)^2$ Completing the SquareCompleting the Square is a process that allows us to ______ a quadratic equation from_______ form $y = ax^2 + bx + c$ into ______ form, which is also known as(h, k) form: $y = a(x - h)^2 + k$. This will allow us to easily find the ______.

Steps for Completing the Square:

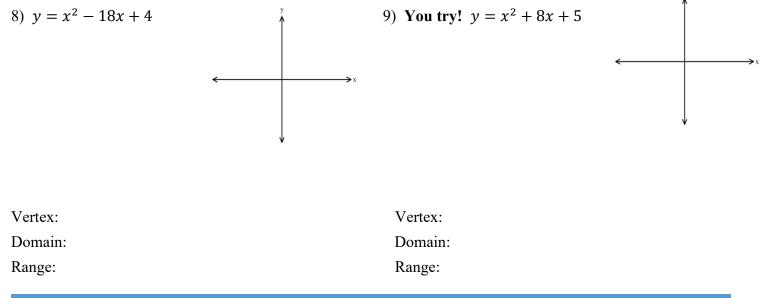
Examples 4 – 7: Complete the square to rewrite the equation in vertex form, and then identify the vertex. 4) $y = x^2 + 4x + 10$ You try! 5) $y = x^2 - 6x - 2$

6)
$$y = 3x^2 - 24x + 10$$

Step 1: $y = 3(x^2 - 8x +) + 10 -$
You try! 7) $y = -4x^2 - 8x + 13$
Step 1: $y = -4(x^2 + 2x +) + 13 -$

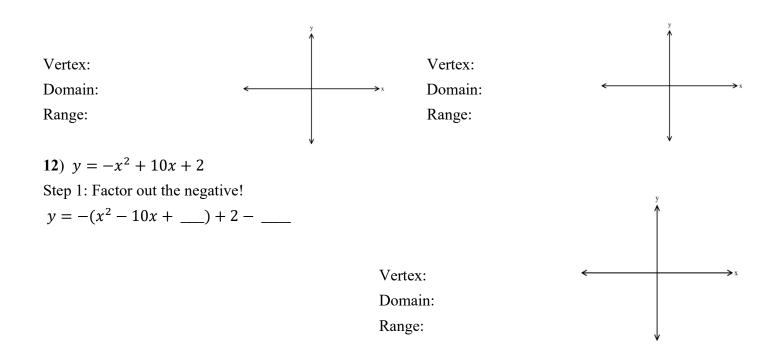
Vertex Form of a Quadratic Function:

For Examples 8 - 12: Write each function in vertex form, and then sketch the function. Include the vertex. Identify the domain and range of each.



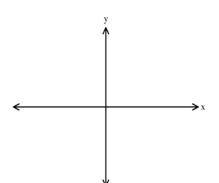
2022-23

$10) \ y = -2x^2 + 20x + 6$	11) You try! $y = 3x^2 - 18x - 2$
Step 1: $y = -2(x^2 - 10x + \) + 6 - \$	Step 1: $y = 3(x^2 - 6x + \) - 2 - \$



Examples 13 – 14: A football is kicked in the air, and the height of the football can be modeled by the equation $y = -x^2 + 2x + 4$, where x is the number of seconds after the ball is kicked.

13) Find the maximum height of the football. Hint: Be sure to factor out the negative to start!



14) After how many seconds does the football reach its maximum height?

ALTERNATIVE APPROACH

Finding the vertex directly from standard form $y = ax^2 + bx + c$ Step 1: Calculate $x = -\frac{b}{2a}$ (this is h, the *x*-coordinate of the vertex) Step 2: Plug this x-value from step 1 into $y = ax^2 + bx + c$ to find k, the *y*-value of vertex.

15) Use the alternative approach above to find the vertex of each quadratic.

a) $y = 3x^2 - 24x + 10$ compare your answer with Example 6 b) $y = x^2 - 18x + 4$ compare your answer with Example 8

You try! Use the alternative approach above to find the vertex of each quadratic.

c) $y = -4x^2 - 8x + 13$ compare your answer with Example 7 d) $y = x^2 + 8x + 5$ compare your answer with Example 9

Algebra 1Ch 8 Notes: Quadratics in Vertex Form8.4 Notes: Solving Quadratics by Square Rooting

٦

Lesson Objectives

- 1. Solve basic quadratic equations by taking square roots of each side of an equation.
- 2. Find x-intercepts (roots, solutions) to a quadratic functions by setting y = 0.

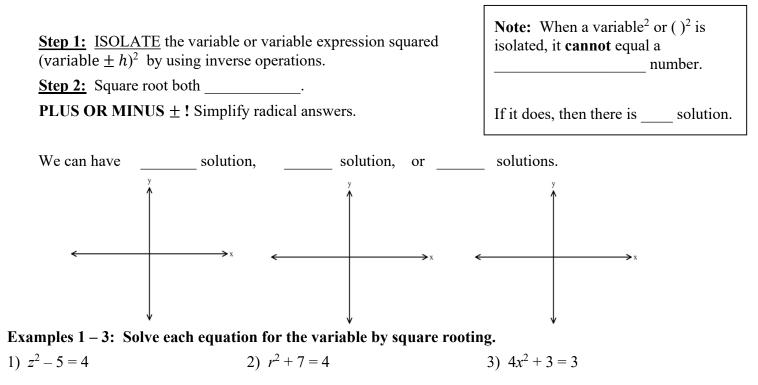
Warm Up:

Г

 When a number is squared, the result is 25. What could the original have as its value? 	2) If $\frac{3}{5}w = \frac{4}{3}$, what is the value of w ?
(Hint: there are two answers.)	A) $\frac{9}{20}$
	B) $\frac{4}{5}$
	C) $\frac{5}{4}$
	D) $\frac{20}{9}$

Solving Quadratics by Square Rooting

*Use this strategy when a function is in vertex form, or if there is not a *b* term.



You try #4 – 6! Solve each equation for the variable by square rooting. 4) $-3x^2 + 4 = -23$ 5) $4t^2 + 17 = 17$ 6) $4p^2 + 8 = 0$

Example 7: Solve for *x*: $5(x + 1)^2 = 80$ **Example 8:** Solve for *a*: $4(a - 3)^2 - 8 = 0$

Ch 8 Notes: Quadratics in Vertex Form

2022-23

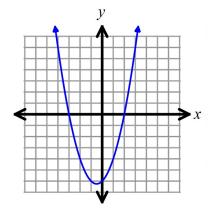
Example 9: Pick one of the following problems to find the solutions. The problems go in order from easiest to more challenging from left to right.

a) $2x^2 - 7 = -9$ b) $3(m-4)^2 = 12$ c) $4(a-3)^2 - 40 = -20$

Examples 10 – 11: Solve each equation for the variable. Simplify any radical answers.

10) $3x^2 - 8 = 28$ 11) $-2x^2 + 14 = -34$

Solving for *x*-intercepts of a quadratic function:



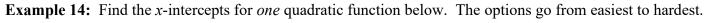
Terms that are also used to describe *x*-intercepts of a function:

- 1)
- 2)
- 3)

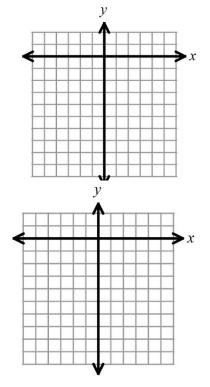
Ch 8 Notes: Quadratics in Vertex Form

Example 12: Find the zeros (x-intercepts) of $f(x) = 3x^2 - 9$, if possible. If needed, write your answer as a simplified radical. Then draw a sketch of the quadratic function. Include the roots (x-intercepts) and vertex.

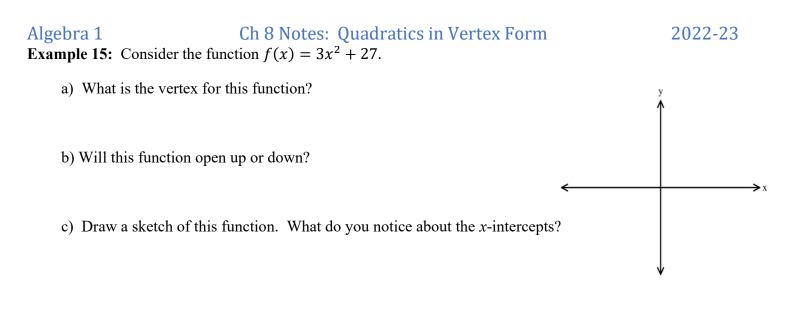
Example 13: Find the roots (x-intercepts) of $f(x) = 2(x - 3)^2 - 8$, if possible. If needed, write your answer as a simplified radical. Then draw a sketch of the quadratic function. Include the vertex and x-intercepts.



a) $y = x^2 - 25$ b) $f(x) = -3x^2 + 12$ c) $g(x) = 5(x-1)^2 - 20$



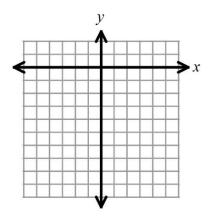
2022-23



d) Solve f(x) for the zeros (x-intercepts.) Does your solution support your conclusion from part

Example 16: What is true for the function $f(x) = -3(x-2)^2 - 9$? Select all that apply.

- A) The range is $y \le -9$.
- B) The vertex is at (-2, -9).
- C) The function opens downward.
- D) The *x*-intercepts are at $2 \pm \sqrt{3}$.
- E) There are no *x*-intercepts.



Ch 8 Study Guide

Graphing Quadratics				
Form	What it tells us	Read about it in your notes!		
Vertex Form	• Vertex at (<i>h</i> , <i>k</i>)	Section 8.2		
$y = a(x-h)^2 + k$	• Domain is all real numbers			
	• Opens up if a is positive (range is $y > k$)			
	• Opens down if a is negative (range is $y < k$)			
	• Vertical stretch if $ a > 1$			
	• Vertical compression of $0 < a < 1$	Section 8.4		
	• Find the <i>x</i> -intercepts by setting the function equal to 0, and solve by square rooting.			
Standard Form	• Complete the square to put into vertex form.	Section 8.3		
$y = ax^2 + bx + c$	• Once the function is in vertex form, you can find the vertex by looking for (<i>h</i> , <i>k</i>).			
	• Alternative approach:			
	• Step 1: Calculate $x = -\frac{b}{2a}$			
	• Step 2: Plug this x-value from step 1 into $y = ax^2 + bx + c$ to find y-value of vertex.			

Solving Quadratic Equations

Technique	Hints and Steps	Read about it in your notes!
Solving by Square Rooting $0 = a(x - h)^2 + k$	 Isolate variable² or (variable ± h)² Square root each side - use (±). 	Section 8.4
$0 = ax^2 + c$	• Simplify any radicals.	