

Ch 4 Proofs Packet (Notes)

4-2

Ex. 1 Given: $\Delta XYZ \cong \Delta XRQ$

Prove: XZ = QX

<u>Statements</u> Reasons

Ex. 2 Given: $\overline{DE} \cong \overline{GE}$, $\overline{DF} \cong \overline{GF}$, $\angle D \cong \angle G$, $\angle DFE \cong \angle GFE$

Prove: $\Delta DEF \cong \Delta GEF$

<u>Statements</u> Reasons

Theorems/postulates/definitions that will be helpful to use in Proofs:

- Reflexive Property
- Transitive Property
- If vertical angles, then congruent
- If midpoint, then segment is divided into congruent segments
- If angle is bisected, then it is divided into two congruent angles
- If segment is bisected, then it is divided into two congruent segments
- If || lines, then alternate interior angles are congruent.
- If || lines, then corresponding angles are congruent.
- If \perp lines, then right angles are formed.
- If two angles are right angles, then they are congruent.
- CPCTC
- SSS
- SAS
- ASA
- AAS
- HL
- Isosceles Triangle Theorem (if two sides of a triangle are congruent, then the angles opposite those sides are congruent)
- Isosceles Triangle Converse (if two angles of a triangle are congruent, then the sides opposite those angles are congruent)
- Definition of Isosceles Triangle: If isosceles triangle, then legs are congruent.

4-3

Ex. 3 Given: $\overline{AB} \cong \overline{ED}$, $\overline{BC} \cong \overline{DC}$

C is the midpoint of \overline{AE}

Prove: $\triangle ABC \cong \triangle EDC$

Statements

Ch 4 Proofs Packet (Notes)

Ex. 4 Given: $\overline{FG} \cong \overline{HG}$,

 \overline{JG} bisects $\angle FGH$

Prove: $\Delta FGJ \cong \Delta HGJ$

Reasons

Statements

Ex. 5 Given: R is the midpoint of \overline{QS} and \overline{PT} .

Prove: $\overline{PQ} \cong \overline{ST}$

Reasons

Statements

Ch 4 Proofs Packet (Notes)

If time...

Ex. 6 Given: $\bigcirc O$, $\overline{CD} \cong \overline{DE}$.

Prove: $\angle COD \cong \angle DOE$

Statements

4-4

Ex. 7 Given: $\overline{AB} \parallel \overline{CD}$, $\overline{AB} \cong \overline{CD}$.

Prove: $\overline{AE} \cong \overline{CE}$

Statements

Formal Geometry Ch 4 Proofs Packet (Notes) Ex. 8 Given: $\angle ADB \cong \angle CDB$, \overline{BD} bisects $\angle ABC$ **Prove:** $\triangle ABD \cong \triangle CBD$ **Statements** Reasons Ex. 9 Given: $\overline{PM} \cong \overline{RM}$. $\angle SPM \cong \angle ORM$ **Prove**: $\Delta PSM \cong \Delta ROM$ **Statements** Reasons

Ex. 10 Given: \overline{AD} bisects $\angle BAC$, $\overline{AD} \perp \overline{BC}$

Prove: $\triangle ABD \cong \triangle ACD$

Statements

Ex. 11 Given: $\angle K \cong \angle M, \overline{JK} \cong \overline{JM}$ \overline{JL} bisects $\angle KLM$

Prove: $\overline{KL} \cong \overline{ML}$

Statements

Proof of Theorem 4.9 (Hypotenuse-Leg (HL) Congruence):

If the hypotenuse and leg of one right Δ are \cong to the corresponding parts of another Δ , then the Δ' s are \cong .

Given: $\triangle ABC$ and $\triangle DEF$ are right $\triangle S$ $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$

Prove: $\triangle ABC \cong \triangle DEF$

Reasons

Statements

Ex. 12 Given: $\overline{AD} \perp \overline{AB}, \overline{CB} \perp \overline{CD}$ $\overline{AD} \cong \overline{CB}$

Prove: $\Delta DAB \cong \Delta BCD$

Statements

Ch 4 Proofs Packet (Notes)

Ex. 13 Given: $\overline{AD} \perp \overline{BC}$,

 $\overline{BD} \cong \overline{CD}$

Prove: $\triangle ABD \cong \triangle ACD$

Statements Reasons

4-6

Proof of Theorem 4.6 (Isosceles Triangle Theorem):

If 2 sides of a Δ are \cong , then the \angle 's opposite those sides are \cong .

Given: $\overline{AB} \cong \overline{AC}$

Prove: $\angle 2 \cong \angle 1$

statements

Ch 4 Proofs Packet (Notes)

Ex. 14 Given: $\angle 1 \cong \angle 3$ **Prove**: $\overline{AB} \cong \overline{AC}$

A 2 C

Statements

Reasons

Ex. 15 Given: $\triangle ABC$ is isosceles with base \overline{AC} \overline{EB} bisects \overline{AC}

Prove: $\triangle ABE \cong \triangle CBE$

A E C

Statements

Ch 4 Proofs Packet (Notes)

Ex. 16 Given: $\overline{CD} \cong \overline{CB}$, $\overline{CD} \mid \mid \overline{AB}$

Prove: $\angle 3 \cong \angle 1$

Statements Reasons

Ex. 17 Given: $\overline{AB} \cong \overline{DE}$, $\angle B$ is a right angle; $\angle D$ is a right angle; C is the midpoint of \overline{BC} .

Prove: $\triangle ACE$ is isosceles.

Statements Reasons