Ch. 10 Notes: Circles

10.1 Notes: Arc and Central Angles in Circles

Objectives:

- Students will be able to find missing central angles in a circle.
- Students will be able to find the measure of arcs in a circle.

Exploration: Use the following link to explore the relationship between a central angle and its arc: <u>https://www.geogebra.org/m/pwa6zQtq</u> Move points B and C around, and watch how the measures of the central angle and the enclosed arc change. Make a conjecture about the relationship between a central angle and its arc:

Measure of an arc	The measure of an arc is to the measure of its central angle.	A 50° B B If m∠APB=50°, then m AB=50°
Measure of a semi-circle	A semicircle is an arc formed by the of a circle, and its measure is degrees.	SEMI-CIRCLE
Total number of degrees in a circle	Any circle has a total measure of degrees.	360°

Ch. 10 Notes: Circles

DRHS

z°

 \mathbf{z}°

 b°

 c°

For #1 – 6: Find the measure of the variable(s) for each diagram. Assume a segment that looks like a diameter is a diameter.

Geometry	Ch. 10 Notes: C	Circles DRHS		
Arc Addition Postulate	The Arc Addition Postulate states that arcs that are adjacent can be to find the measure of a larger arc.	mPQR = mPQ + mQR		
Minor Arc	An arc with a measure than 180°	A		
Major Arc	An arc with a measure than 180°. To name a major arc letters are used. <i>Follow the</i> order in which they are written to calculate measure.			
7) Find the measure of each arc or angle (assuming \overline{KN} and \overline{QT} are diameters).Note: If an arc is named with three letters, it is called a major arc. The measure is calculated the <i>long way around</i> the circle. Follow the order of the letters.A. measure of \widehat{QN} B. measure of \widehat{SQ} C. measure of $\angle SRN$				
D. measure o	of \widehat{QNK} E. measure of \angle	TRN Q $A4^{\circ}$ $A4$		
F. measure of	f QNS	86° K T		

For **#9-10**: Find the value of the variable.

Ch. 10 Notes: Circles

DRHS

10.2 Notes: Inscribed Angles

Objectives:

• Students will be able to use the relationship between inscribed angles and arcs to find missing measures.

Exploration: Use the given link to explore the relationship between inscribed angles and their enclosed arcs: <u>https://www.geogebra.org/m/yX6FgbPA</u>

- ✓ Click on "Inscribed Angle", and move around points B and C.
- \checkmark Make a conjecture comparing the measure of an inscribed angle and its arc.

For #1 – 6: Find the measure of each variable.

Ch. 10 Notes: Circles

DRHS

You try! 12) Find the measure of each variable, given that \overline{PQ} is a diameter.

For #13 – 16: Find each variable, given that PQ is a diameter.

Ch. 10 Notes: Circles

DRHS

10.3 Notes: Chords and Tangent Segments in Circles

Objectives:

- Students will be able to solve problems using chords in circles.
- Students will be able to solve problems involving tangent segments with circles.

Exploration: Use this link to explore relationships between central angles, chords, and arcs: https://www.geogebra.org/m/U76G7TtB

- ✓ Click on the boxes for ANGLES, CHORDS, and ARCS.
- \checkmark Move points A, B, C, and D around the circle.
- ✓ Write a conjecture about the relationships between chords and arcs that have the same central angle.

Demonstration of the relationship between tangent segments and radii: https://www.geogebra.org/m/xbAwK5Pd

Ch. 10 Notes: Circles

DRHS

For #6–11: Find the variable or segment. Assume that segments that appear to be tangent are tangent.

You try #9-11!

Challenge! 12) Find *x*.

Ch. 10 Notes: Circles

10.4 Notes: Area of Circles and Sectors

Objectives:

- Students will be able to find the area of circles and sectors.
- Students will be able to find the area of shaded regions.

For #1-2: Find the area for each circle shown. Write your answers in terms of pi.

3) A circle has an area of $49\pi in^2$. Find the length of the radius and diameter of the circle.

You try! 4) A circle has an area of $121\pi \ cm^2$. Find the length of the radius of the circle.

Ch. 10 Notes: Circles

DRHS

Exploration: Amy is buying a rug with a radius of 4 feet, as shown.

A) What is the area of the rug?

B) Amy finds another rug with the same radius but that is exactly half of a circle (called a semicircle). What is the area of this rug?

C) Amy now finds a rug with the same radius, but it is only a quarter of a circle. What is the area of this rug?

For #5–6: Find the area of each sector, to the nearest tenth.

11) A sector has a measure of 60 degrees, and a radius of 9. Find the area of the sector *as an exact answer in terms of pi*.

For #12 – 13: Give an exact answer in terms of pi.

12) Find the area of the shaded region.

13) Find the area of the shaded region.

Ch. 10 Notes: Circles

DRHS

10.5 Notes: Circumference and Arc Length

Objectives:

- Students will be able to use the circumference of circles to solve problems.
- Students will be able to find the length of an arc.

For #1-2: Find the circumference of each circle shown. Write your answers in terms of pi.

3) A circle has a circumference of 36π in. Find the area of the circle.

You try! 4) A circle has a circumference of $12\pi m$. Find the area of the circle.

Geometry	Ch. 10 Notes: Circ	les DRHS
Length of an Arc	The length of an arc is a distance of a curve between two points on a circle. It is part of the of a circle. Note: The length of an arc is NOT the same as the measure of an arc.	Radius Radius Arc Measure
Arc Length Formula	The length of an arc (arc length) can be found by finding a of the circumference of a circle.	$\ell = \frac{m}{360} \cdot 2\pi r$ or $\ell = \frac{m}{360} \cdot d\pi$

For #5–8: Find the length of \overrightarrow{PQ} . Round answer to the nearest tenth.

You try #7 – 8!

Ch. 10 Notes: Circles

9) An arc has a measure of 90 degrees, and a *diameter* of 16. Find the length of the arc *as an exact answer in terms of pi*.

You try! 10) An arc has a measure of 60 degrees, and a *radius* of 9. Find the length of the arc *as an exact answer in terms of pi*.

11) An arc has a length of 10π cm and a radius of 20 cm. Find the measure of the arc.

You try! 12) An arc has a length of 12π cm and a radius of 48 cm. Find the measure of the arc.

