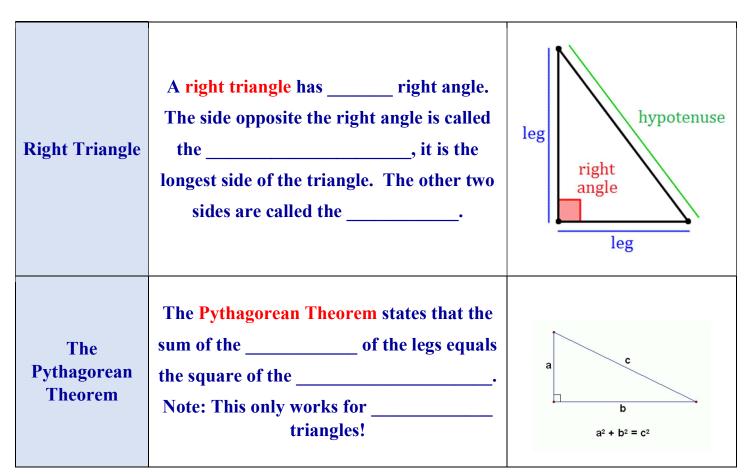
Ch. 7 Notes: Right Triangles

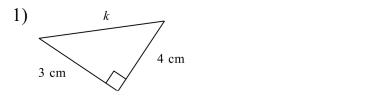
DRHS

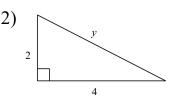
1

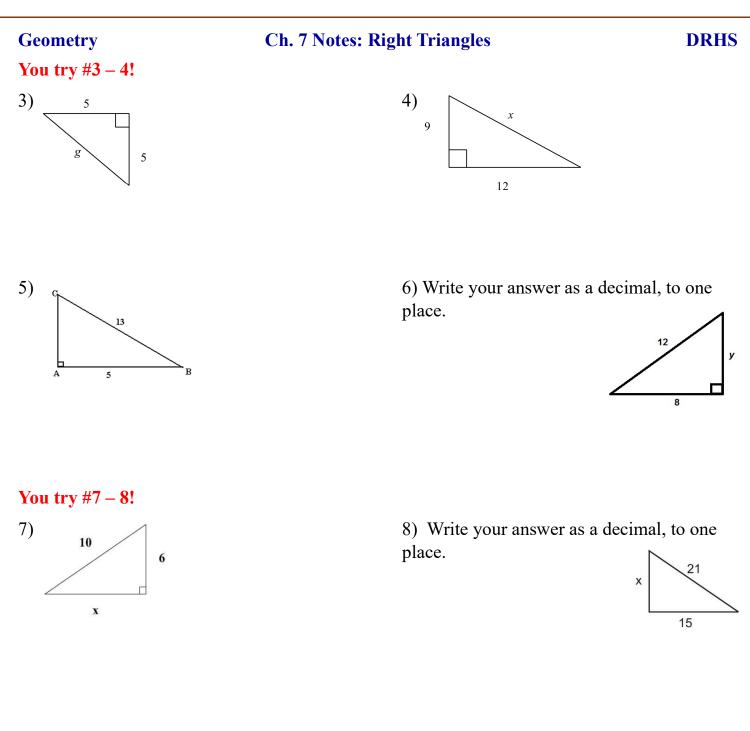
7.1 Notes: The Pythagorean Theorem


Objectives:

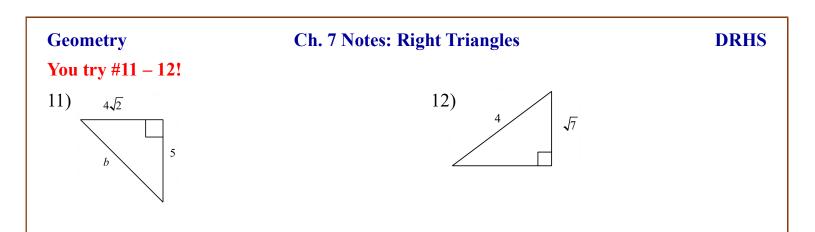
- Students will be able to find the missing side of a right triangle.
- Students will use the Pythagorean Theorem to solve problems.


Video Demonstration of the Pythagorean Theorem:

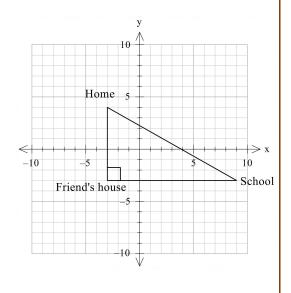

https://knpb.pbslearningmedia.org/resource/mgbh-math-ee-gshreepythag/pythagorean-theorem/


• Why does the Pythagorean Theorem work? Explain it in your own words.

For #1 - 8: Find the missing side for each right triangle. If needed, write your answer as a simplified radical.



For #9 – 12: Find the missing side in each right triangle. If needed, write your answer as a simplified radical.



13) A triangle has side lengths of 6, 8, and 10. Is the triangle a right triangle? Explain your reasoning.

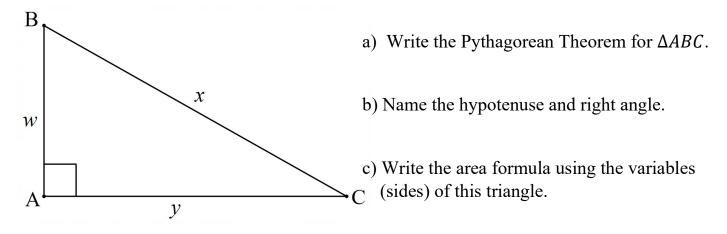
14) Each day, Amy walks to school. She leaves her home and walks south 7 blocks to her friend's house. They then turn to the west and walk 12 blocks to the school. At the end of the day, Amy walks directly from the school to her home.

a) To the nearest tenth (one decimal place), how many blocks does Amy walk on her way home?

b) How many blocks does Amy walk in one day for her round trip to the school and back home? Round to the nearest tenth.

Ch. 7 Notes: Right Triangles

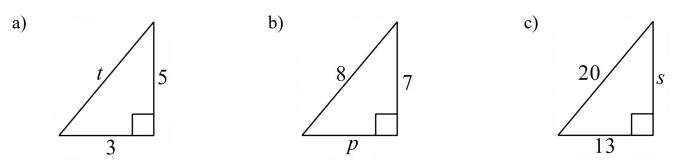
Geometry


DRHS

7.1 Remediation

Part 1: When to use an *upper-case* letter or *lower-case* letter <u>in Geometry</u>.

- Lower case letters are usually used to represent numbers and variables:
 - unknown side lengths, scale factors & parts of polygons
- Upper case letters are usually used to name points (vertices) and answers in a formula, capital letters are used in naming segments, rays, and lines:
 - o area formula, line name, point name

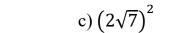

Example 1: Use the following triangle to complete the statements below.

Part 2: Setting up the Pythagorean Theorem Practice

- The Pythagorean Theorem is $a^2 + b^2 = c^2$,
 - \circ a & b are the legs and c is the hypotenuse
- Using the parts of the triangle (legs and hypotenuse) to represent the Pythagorean Theorem:
 - \circ $leg^2 + leg^2 = hypotenuse^2$

Example 2: Set up the Pythagorean Theorem for each triangle below. *Do not solve*.

Ch. 7 Notes: Right Triangles

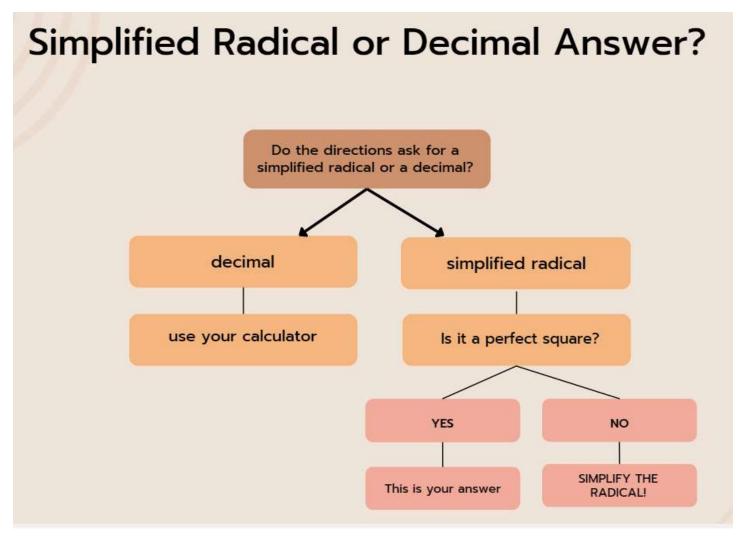

Geometry

Part 3: Squaring a Radical

1.
$$(\sqrt{x})^2 = \sqrt{x} \cdot \sqrt{x} = x$$

 $\circ (\sqrt{9})^2 = \sqrt{9} \cdot \sqrt{9}$
 $3 \cdot 3 = 9$
2. $(a\sqrt{b})^2 = (a\sqrt{b})(a\sqrt{b})$
 $= (a \cdot a \cdot \sqrt{b} \cdot \sqrt{b})$
 $= a^2 \cdot b$

Example 3: Solve. a) $(\sqrt{11})^2$



DRHS

Part 4: When to simplify a radical and when to give a decimal answer.

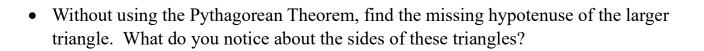
Ch. 7 Notes: Right Triangles

7.2 Notes: Pythagorean Theorem Triples

Objectives:

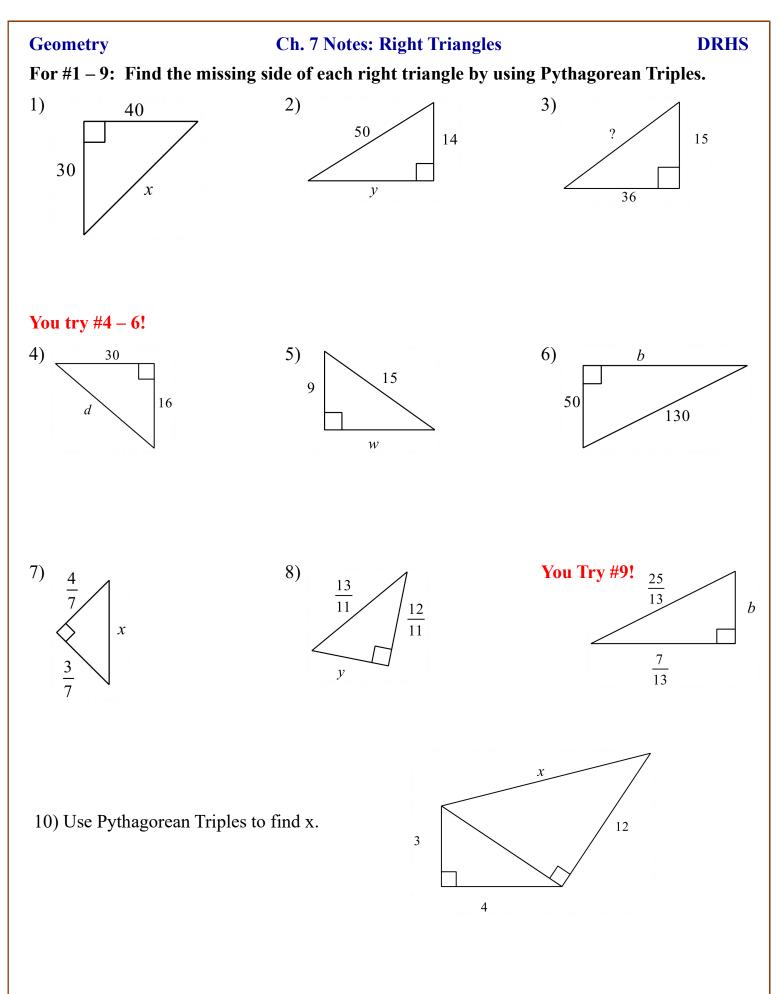
- Students will be able to use Pythagorean Triples to find missing sides in right triangles.
- Students will be able to solve problems involving Pythagorean Triples.

Exploration:


• Consider the two triangles shown. Are they similar? What theorem or postulate did you use to make this decision? (Consider AA~, SAS ~, and SSS ~.)

3

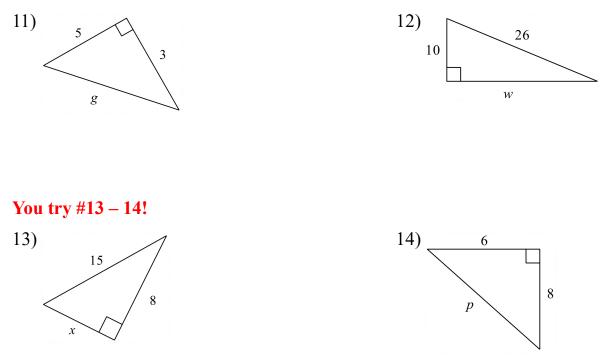
6


8

• Find the missing hypotenuse of the smaller triangle. Hint: use the Pythagorean Theorem.

Pythagorean Triples	If a right triangle is a Pythagorean Triple, then all three of its sides are Memorize the ones listed!	Common Pythagorea 3, 4, 5, 12, 7, 24, 8, 15,	n Triples: Note: the largest number is the hypotenuse .
Using Pythagorean Triples	If a triangle is a dilation of a Pythagorean Triple, then you can multiply by theto find a missing side.	 Steps: 1) Identify which triple is being used. 2) Find the scale factor. 3) Multiply by the scale factor. Note: You can always use the Pythagorean Theorem, as well. 	

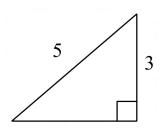
DRHS



Ch. 7 Notes: Right Triangles

DRHS

Note: Not all right triangles are Pythagorean Triples. If the sides of a right triangle do not form a Pythagorean Triple, then use the Pythagorean Theorem to find a missing side.

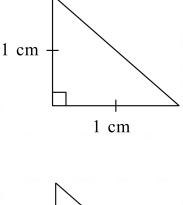

For #11 – 14: Find the missing side for each right triangle. If needed, write your answer as a simplified radical.

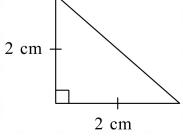
15) Garrett left his work and drove 16 miles north. He then turned 90 degrees and drove 30 miles west. How far was he from his starting location? (Hint: label the compass then draw a right triangle.)

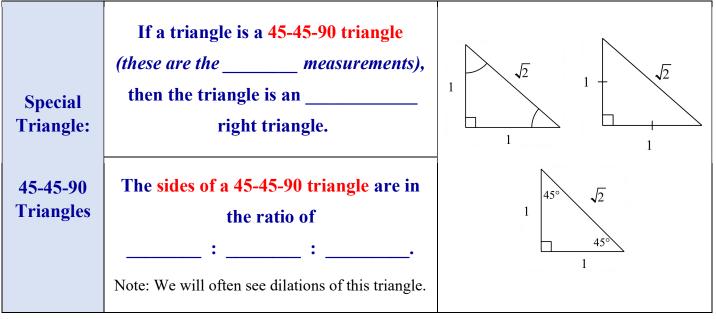
16) Find the area and perimeter of the right triangle shown below.

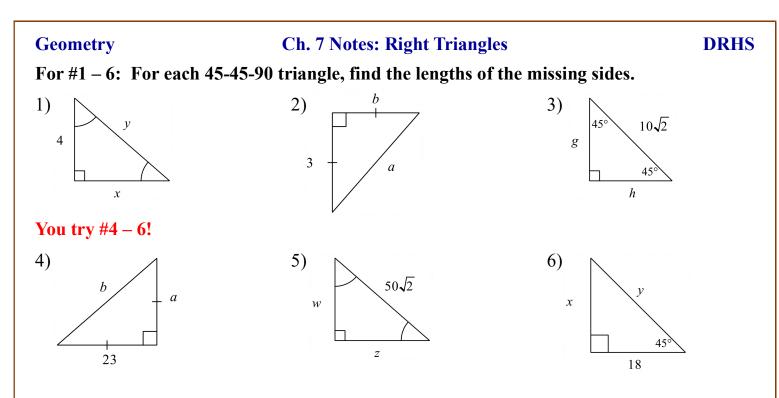
Ch. 7 Notes: Right Triangles

DRHS

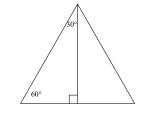

7.3 Notes: Special Right Triangles

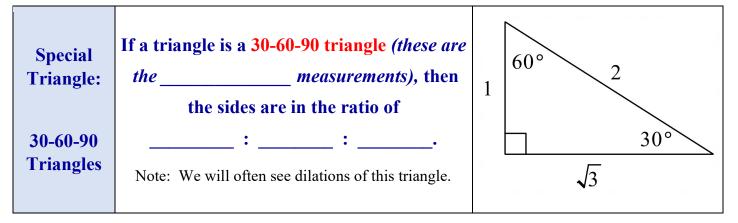

Objectives:

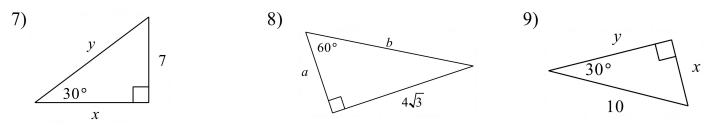

- Students will be able to identify special right triangles.
- Students will be able to find missing sides of special right triangles.

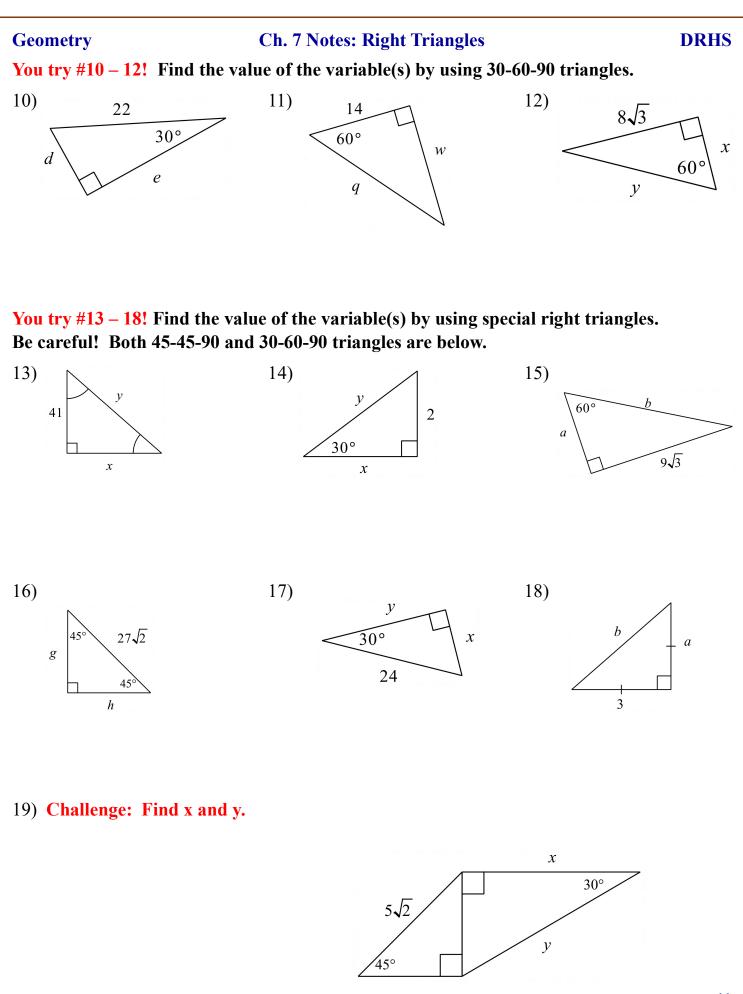

Exploration: Consider an isosceles right triangle, with each side of 1 cm, as shown.

- a) Find the measures of all angles of the triangle.
- b) Find the length of the hypotenuse of the triangle. Write your answer as a simplified radical. Hint: Use the Pythagorean Theorem.
- c) Change the length of the legs to 2 cm each. Do the angles change?
- d) Using the new length of 2cm for each leg, find the length of the hypotenuse. Write your answer as a simplified radical. Hint: Use the Pythagorean Theorem.







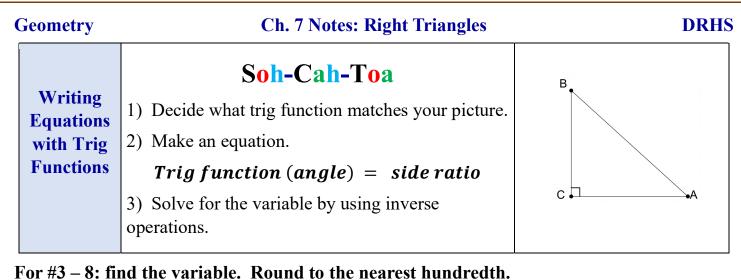

There is another type of special right triangle, whose side relationships can be found by dropping a perpendicular segment from one vertex of an equilateral triangle to the base, as shown below.

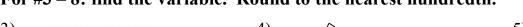
For #7 – 9: Find the value of the variable(s) by using 30-60-90 triangles.

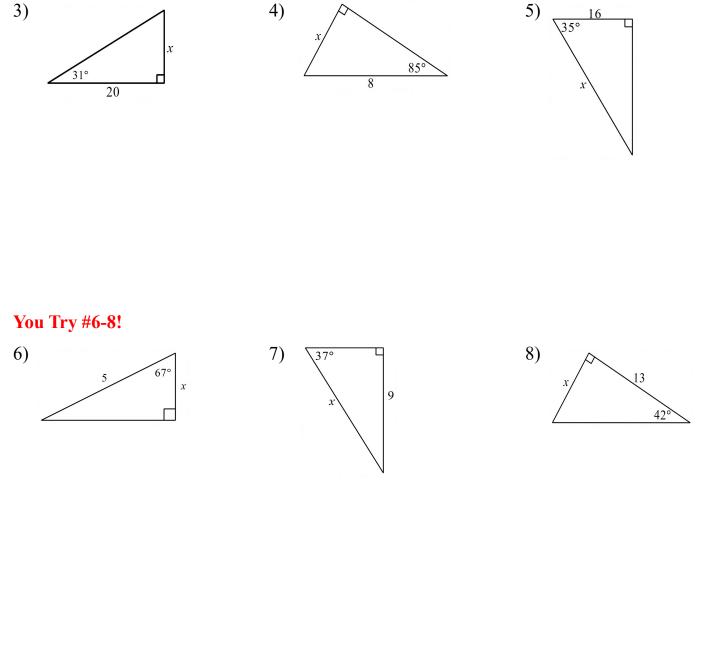
Ch. 7 Notes: Right Triangles

DRHS

7.4 Notes: Right Triangle Trigonometry, Part I

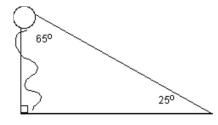

Objectives:


- Students will find ratios for trig functions for right triangles.
- Students will use trig functions to find missing sides of right triangles.

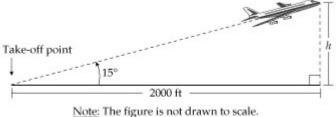

Trigonometry is the study of the relationships between the sides and angles of right triangles. The legs are called *adjacent or opposite* depending on which acute angle is being used. The hypotenuse is always the longest side, which is directly opposite the right angle. There are three basic trig ratios that you will need to know: sine, cosine, and tangent.

		Soh-Cah-Toa	В
Tria	Sin A =	Sin B =	
Trig Functions	Cos A =	Cos B =	
	Tan A =	Tan B =	C ↓ A

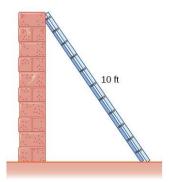
Geometry	Ch. 7 Notes: Right Triangles		DRHS	
Helpful hints	 We will only find trig functions of acute angles this year. Label your sides as Opposite, Adjacent, and Hypotenuse. All ratios must be reduced and rationalized, if needed. 			
L	SOH	– CAH – TOA		
1) Find the requ	uested trig ratio. Reduce	your answers, if possib	ole.	
sin A =	$\cos A =$	tan A =	10 6	
sin C =	$\cos C =$	tan C =	$A \bullet 8 \bullet B$	
Reminder: We year!	only find trig functions fo	r the	_ angles of a right triangle this	
You try #2! Fin	nd the requested trig ratio.	Reduce your answers	s, if possible.	
sin A =	cos A =	tan A =	A 12 B	
sin C =	cos C =	tan C =	13 5 C	
3) Which angle has a cosine of $\frac{3}{5}$? You try #4! What is cos x in the triangle?				
A. ∠A	A	A. $\frac{41}{40}$	^B	
B. ∠B	3 5	B. $\frac{41}{9}$	9 41	
C. ∠C		C. $\frac{40}{9}$	$C \xrightarrow{40} A$	
D. None of	f the above.	D. $\frac{40}{41}$		
5) Find the foll	owing values by using yo		o 3 decimal places.	
	r must be in Degrees!		1	
a. sin 18°	b. cos 68°	c. tan 32°	d. tan 80°	



Ch. 7 Notes: Right Triangles

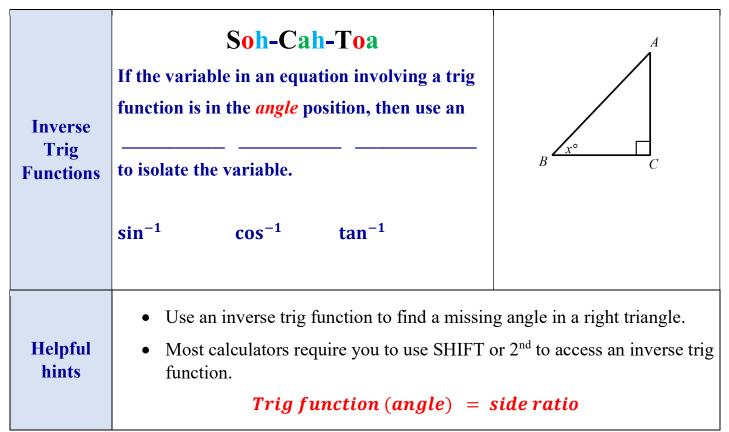

DRHS

Angle of Elevation: the "line of sight" angle made between an object and the ground.


• What is the angle of elevation in the picture shown?

9) An airplane has an angle of elevation of 15 degrees from the runway when it takes off. The airplane pictured below is 2,000 feet along the ground from its take-off point. Find the height, h, of the airplane (round answer to nearest foot).

10) A 10-foot ladder is leaning against the side of a house, with an angle of elevation of 62 degrees. How far up the side of the house does the ladder reach? Round to 2 decimal places.



DRHS

7.5 Notes: Right Triangle Trigonometry, Part II

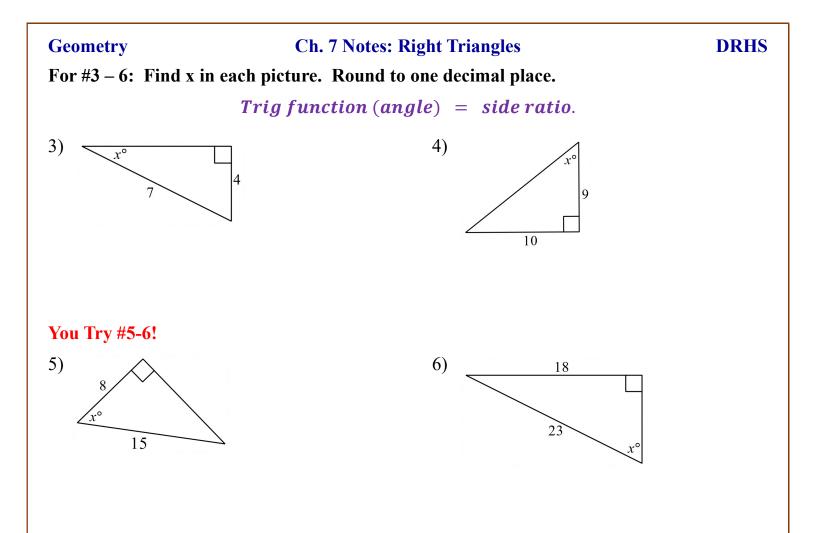
Objectives:

- Students will use inverse trig functions to find missing angles of a right triangle.
- Students will solve problems involving trig and inverse trig functions.

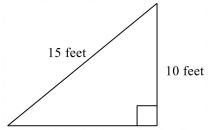
1) Use your calculator to find the angle (round to nearest whole angle):

a. $\cos B = 0.5$ b. $\tan x = 1.33$

You try c and d!


c. $\sin A = .8990$ d. $\cos x = 0.397$

2) Use your calculator to find x: *Note:* decide if you should use the trig function or its inverse. Round to two decimal places.

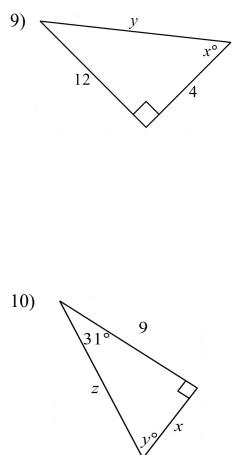

a. $\sin 60 = x$ b. $\cos x = .75$

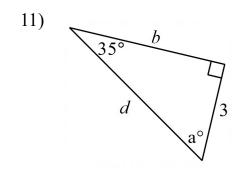
You try c and d!

c. $\tan 30 = x$ d. $\tan x = 1$

7) A 15-foot ladder is leaning against a building. If the ladder hits the building at a height of 10 feet, find the angle of elevation to two decimal places.

You try #8! A skateboard ramp is 3.5 feet high and 6 feet long along the horizontal. To the nearest degree, what is the measure of the angle of elevation for the ramp?




Ch. 7 Notes: Right Triangles

DRHS

Summary of finding parts of a right triangle					
If I know	I should use	to find the			
2 sides	the Pythagorean Theorem	3 rd side			
2 sides	inverse trig function	related angle			
A side and an angle	trig function	related side			
2 angles	sum of 180 degrees	3 rd angle			

For #9 – 11: Solve for the variable(s) in each triangle. Round to one decimal place.

Ch. 7 Notes: Right Triangles

DRHS

Ch 7 Study Guide

- 7.1:
 - The Pythagorean Theorem: $a^2 + b^2 = c^2$
 - Only use for right triangles.
 - c is the hypotenuse (side opposite the right angle)
- 7.2:
 - Pythagorean Triples are right triangles with sides that are whole numbers.
 - We can have dilations of Pythagorean Triples.
 - Common triples include the following:
 - **3-4-5**
 - **5**-12-13
 - **7-24-25**
 - 8-15-17
 - And many, many more...
- 7.3:
 - Special Right triangles have the following ratio of sides:
 - 45 45 90: 1, 1, $\sqrt{2}$
 - 30 60 90: 1, $\sqrt{3}$, 2
 - We can have dilations of this patterns.
- 7.4:
 - Trig Functions:
 - $Sin = \frac{opposite}{hypotenuse}$
 - $Cos = \frac{adjacent}{hypotenuse}$
 - $Tan = \frac{opposite}{adjacent}$
 - Use trig functions to find missing sides in a right triangle.
 - Trig function (angle) = ratio
 - Angle of elevation
 - Angle made by the line of sight of an object and a horizontal line (typically the ground.)
- 7.5:
 - Inverse Trig functions are used to find a missing angle of a right triangle.
 - "Summary of finding parts of a right triangle..." chart on pg. 16.