Assigned	Assignment (Check due dates and time assignments are due in mathXL)
Mon. 8/12/2024 Tues. 8/13/2024	Introduction assignment in MathXL: Go to washoeschools.net, click on Students and Parents then scroll down to envision Mathematics *Syllabus Signed *Pay \$3 Lab Fee to Bookkeeper
Wed. 8/14/2024 Thur. 8/15/2024	1.1 Worksheet: Fractions
Fri. 8/16/2024 Mon. 8/19/2024	1.2 MathXL: Order of Operation
Tues. 8/20/2024 Wed. 8/21/2024	1.3 MathXL: Variables, Expressions, and Equations
Thur. 8/22/2024 Fri. 8/23/2024	1.4 MathXL: Real Numbers on the Number Line, Absolute Value
Mon. 8/26/2024 Tues. 8/27/2024	1.5 MathXL: Add and Subract with Signed Numbers
Wed. 8/28/2024 Thur. 8/29/2024	1.6 MathXL: Multiply and Divide with Signed Numbers
Fri. 8/30/2024 Mon. 9/2/2024	Ch 1 Practice Test
Tues. 9/3/2024 Wed. 9/4/2024	Ch 1 Test

1.1 Fractions

Factors:	Product:	
Parts which are multiplied	Answer to a multiplication problem	
Prime Number:	Composite number:	
A number only divisible by itself and 1	A number made up of multiple factors.	
EXAMPLE 1 Factoring Numbers		
Write each number as the product of prime f	actors.	

(a) 35

(b) 24

Vocabulary:

Fraction:	Mixed number:
Proper fraction:	Improper fraction:
Numerator:	Denominator:
Reciprocals:	Zero vs Undefined!

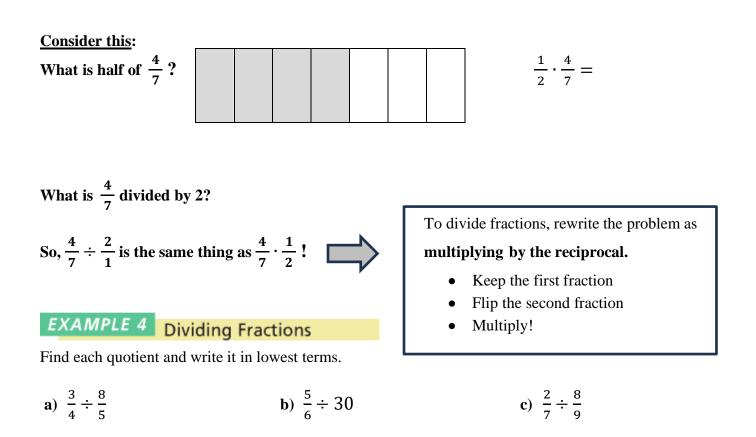
EXAMPLE 2 Writing Fractions in Lowest Terms

Simplify each fraction / Write each in lowest terms:

a) $\frac{12}{15}$

b)
$$\frac{15}{45}$$

EXAMPLE 3 Multiplying Fractions


Find each product and write it in lowest terms:

a)
$$\frac{3}{8} \cdot \frac{4}{9}$$

To multiply fractions, multiply numerators and multiply denominators. (Go straight across!)

Another option is to break the numbers into FACTORS, then CANCEL any factor that is in the numerator and denominator.

b) $\frac{4}{7} \cdot \frac{5}{12}$

Now consider this one:

Your take-out pizzas are cut in 8 slices. Everyone eats what they want and you are putting leftovers away. There are 3 slices left of pepperoni and 4 slices left of cheese pizza. What fraction of a whole pizza remains?

EXAMPLE 5 Adding Fractions with the Same Denominator

Find each sum, and write it in lowest terms.	To add fractions with the same denominator:
(a) $\frac{3}{7} + \frac{2}{7}$	• Keep the denominator (treat it as the "size" of the pieces)
(b) $\frac{2}{10} + \frac{3}{10}$	• Add the numerators (how many pieces total of that size)

EXAMPLE 6 Adding Fractions with Different Denominators

Find a common denominator and build one or more fractions bigger so that you can add them:

(a) $\frac{4}{15} + \frac{5}{9}$

Least Common Denominator (LCD):

Steps:

- 1) Find the LCD
- 2) Multiply numerator & denominator by the same thing to build one (or more) fraction(s) bigger so you have the same denominator in all fractions.
- 3) Keep the denominator and add the numerators.
- 4) Write your answer in lowest terms. (Simplify)

c) $\frac{3}{7} + \frac{1}{14}$

EXAMPLE 7 Subtracting Fractions

Find each difference, and write it in lowest terms.

(a)
$$\frac{15}{8} - \frac{3}{8}$$
 (b) $\frac{7}{18} - \frac{4}{15}$

c)
$$\frac{7}{9} - \frac{1}{3} + \frac{1}{9}$$

One last thing to consider:

Your take-out pizzas are cut in 8 slices. You are gathering up leftovers after dinner. There are 5 slices left of pepperoni, and 6 slices left of cheese pizza. What fraction of a whole pizza remains?

Example 8: Working with Mixed Numbers

Change mixed numbers to improper fractions when it helps:

(a) $5\frac{1}{4} =$

- **(b)** $3\frac{1}{2} + 2\frac{3}{4}$
- (c) $2\frac{1}{3} \cdot 5\frac{1}{4}$

(d)
$$3\frac{3}{4} \div 4\frac{2}{5}$$

(e) A board is $10\frac{1}{2}$ feet long. If it must be sectioned off into four pieces of equal length for shelves, how long must each piece be?

<u>1.2 Exponents and Order of Operations</u>

EXAMPLE 1 Evaluating Exponential Expressions

Find the value of each exponential expression.

(a) 5 ²	(b) 6 ³	(c) 2 ⁵	(d) $\left(\frac{2}{3}\right)^3$	(e) $(0.3)^2$
Order of	of Operations:			
P	Parentheses ()			
E	Exponents			
MD	Multiply or Divide	(either can be $1^{st} - g$	go left \rightarrow right!)	
AS	Add or Subtract (eit	her can be $1^{st} - go$	left \rightarrow right!)	

EXAMPLE 2 Using the Rules for Order of Operations

Find the value of each expression.

a) $4+5\cdot 6$ **b**) 9(7+6) **c**) $6\cdot 8+24\div 2$

d)
$$2(5+6) + 7 \cdot 3$$
 e) $6 + \frac{3}{4} \div \frac{1}{4}$ **f**) $6 \cdot 12 \div 3 + 4 \cdot 2^3 - 3^3$

Now you try!		
g) 18.3 – 2(6.4)	h) $6(2+4) - 7 \cdot 5$	i) $80 \div 10 \cdot 2 - 2^3 + 3 \cdot 4^2$

EXAMPLE 3 Using Brackets and Fraction Bars as Grouping Symbols

Simplify each expression.

a)
$$2[8+3(6+5)]$$
 b) $\frac{4(5+3)+3}{2(3)-1}$

Now you try!

c) 7[(3²-1)+4] d)
$$\frac{9(14-4)-2}{4+3\cdot 6}$$

1.3 Variables, Expressions, and Equations

Objectives:

- Evaluate algebraic expressions, given values for the variables
- Translate word phrases to algebraic expressions
- Identify solutions of equations
- Identify solutions of equations from a set of numbers
- Distinguish between expressions and equations

Variable

Algebraic expression

EXAMPLE 1 Evaluating Expressions

Find the value of each algebraic expression for x = 5.

a) 8x **b**) $3x^2 - 4$

EXAMPLE 2 Evaluating Expressions

Find the value of each expression for x = 5 and y = 3.

a)
$$2x + 7y$$
 b) $\frac{9x - 8y}{2x - y}$ **c)** $x^2 - 2y^2$

EXAMPLE 4 Deciding Whether a Number Is a Solution of an Equation

Decide whether the given number is a solution of the equation.

(a) 5p + 1 = 36; 7 (b) 9m - 6 = 32; 4

c) $4x - 3 = 8; \frac{11}{4}$

EXAMPLE 5 Finding a Solution from a Given Set

Write each word statement as an equation. Use x as the variable. Then find all solutions of the equation from the set

$$\{0, 2, 4, 6, 8, 10\}.$$

(a) The sum of a number and four is six. (b) Nine more than five times a number is 49.

(c) The sum of a number and 12 is equal to four times the number.

EXAMPLE 6 Distinguishing between Equations and Expressions

Decide whether each of the following is an equation or an expression.

a) 2x - 5yb) 2x = 5yc) 2x + 5 = 6d) 2x + 5 - 6

1.4 Real Numbers and the Number Line

EXAMPLE 1 Using Negative Numbers in Applications

Use an integer to express the number in boldface italics in each application.

- (a) The lowest Fahrenheit temperature ever recorded was *129*° below zero at Vostok, Antarctica, on July 21, 1983. (*Source: World Almanac and Book of Facts.*)
- (b) General Motors had a loss of about \$31 billion in 2008. (Source: The Wall Street Journal.)

Natural Numbers:

Whole Numbers:

Integers:

Rational Numbers:

Irrational Numbers:

Real Numbers:

EXAMPLE 2 Determining Whether a Number Belongs to a Set

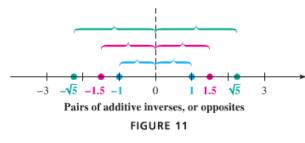
List the numbers in the following set that belong to each set of numbers.

$$\left\{-5, -\frac{2}{3}, 0, 0.\overline{6}, \sqrt{2}, 3\frac{1}{4}, 5, 5.8\right\}$$

(a) Natural numbers: (b) Whole numbers: (c) Integers:

(d) Rational numbers: (e)

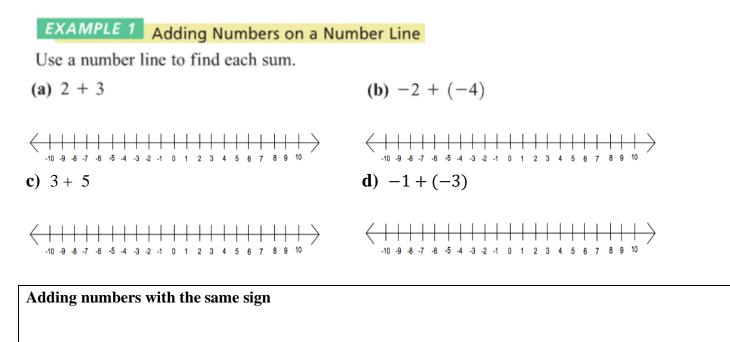
(e) Irrational numbers:


(f) Real numbers:

EXAMPLE 3 Determining the Order of Real Numbers

- a) Is the statement -3 < -1 true or false?
- b) True or false? -5 > -4

Absolute Value Distance from		~		
EXAMPLE 4 Find	ding the Absolute Value			
Simplify by finding	the absolute value.			
a) 0	b) -6	c) [7]		
d) - 5	e) - - 5	f) 8 – 2	g) - 8 - 2	


Additive Inverses (Opposite):

What is the additive inverse of -9?

What is the additive inverse of 2.4?

1.5 Adding and Subtracting Real Numbers

EXAMPLE 2 Adding Two Negative Numbers

Find each sum.

(a) -2 + (-9) (b) -8 + (-12) (c) -15 + (-3)

EXAMPLE 3 Adding Numbers with Different Signs

Use a number line to find the sum -2 + 5.

Use the number line to find the sum: 4 + (-8)

Adding numbers with different signs

EXAMPLE 4 Adding Numbers with Different Signs

Find the sum -12 + 5.

EXAMPLE 5 Adding Mentally

Check each answer by adding mentally. If necessary, use a number line.

(a)
$$7 + (-4)$$
 (b) $-8 + 12$ c) $-\frac{1}{2} + \frac{1}{8}$

d)
$$-16 + 16$$
 e) $\frac{3}{4} + -\frac{7}{4} + \frac{5}{4}$

EXAMPLE 6	Using the Definition of Subtraction
-----------	-------------------------------------

	Subtracti	on is the same as "adding the opposite"
(a) 12 - 3	(b) 5 - 7	(c) -6 - 9
(d) −3 − (−5)	(e) $\frac{4}{3} - \left(-\frac{1}{2}\right)$	

Uses of the Symbol -

We use the symbol - for three purposes:

- 1. to represent subtraction, as in 9 5 = 4;
- **2.** to represent negative numbers, such as -10, -2, and -3;
- 3. to represent the opposite (or negative) of a number, as in "the opposite (or negative) of 8 is -8."

EXAMPLE 7 Adding and Subtracting with Grouping Symbols

Perform each indicated operation.

a) -6 - [2 - (8 + 3)]b) |4 - 7| + 2|6 - 3|

You try! e) 8 - [(-3 + 7) - (3 - 9)] f) 3|6 - 9| - |4 - 12|

Pre-College Math

Word or Phrase	Example	Numerical Expression and Simplification
Sum of	The sum of -3 and 4	-3 + 4, or 1
Added to	5 added to -8	-8 + 5, or -3
More than	12 more than -5	-5 + 12, or 7
Increased by	-6 increased by 13	-6 + 13, or 7
Plus	3 <i>plus</i> 14	3 + 14, or 17

Word, Phrase, or Sentence	Example	Numerical Expression and Simplification
Difference between	The difference between -3 and -8	-3 - (-8) simplifies to -3 + 8, or 5
Subtracted from*	12 subtracted from 18	18 - 12, or 6
From , subtract	From 12, subtract 8.	12 - 8 simplifies to 12 + (-8), or 4
Less	6 less 5	6 – 5, or 1
Less than*	6 less than 5	5 - 6 simplifies to 5 + (-6), or -1
Decreased by	9 decreased by -4	9 - (-4) simplifies to 9 + 4, or 13
Minus	8 minus 5	8 – 5, or 3

EXAMPLE 8 Translating Words and Phrases (Addition)

Write a numerical expression for each phrase, and simplify the expression.

a) The sum of -8 and 4 and 6 b) 3 more than -5, increased by 12

Write a numerical expression and then simplify.

c) The difference between 5 and -8, decreased by 4

d) 7 less than -2

EXAMPLE 10 Solving a Problem Involving Subtraction

The record-high temperature in the United States is 134°F, recorded at Death Valley, California, in 1913. The record low is -80° F, at Prospect Creek, Alaska, in 1971. See **FIGURE 16**. What is the difference between these highest and lowest temperatures? (*Source: National Climatic Data Center.*)

10b) Find the difference between a gain of 226 yards on the football field by the Chesterfield Bears and a loss of 7 yards by the New London Wildcats.

-80

1.6 Multiplying and Dividing Real Numbers

Multiplying numbers with different signsMultiplying two negative numbersEXAMPLE 1Multiplying a Positive Number and a Negative NumberFind each product, using the multiplication rule given in the box.(a)
$$8(-5)$$
(b) $(-5)4$ (c) $-9\left(\frac{1}{3}\right)$ EXAMPLE 2Multiplying Two Negative Numbers(a) $-9(-2)$ (b) $-6(-12)$ (c) $-8(-1)$

EXAMPLE 4 Dividing Signed Numbers

Find each quotient.

(a)
$$\frac{8}{-2}$$
 (b) $\frac{-100}{5}$ (c) $\frac{-1.47}{-7}$
c) $-\frac{1}{8} \div \left(-\frac{3}{4}\right)$ d) $\frac{0}{14.2}$ e) $\frac{14.2}{0}$

EXAMPLE 5 Using the Rules for Order of Operations

Perform each indicated operation.

a) -9(2) - (-3)(2) b) -5(-2-3) c) -6 + 2(3-5)

d)
$$\frac{5(-2)-3(4)}{2(1-6)}$$
 e) $-4(6) - (-5)(12)$

EXAMPLE 6	Evaluating Expressions for Numerical Values	
Evaluate each expression for $x = -1$, $y = -2$, and $m = -3$.		
a) $(3x + 4y)(-2)$	2 <i>m</i>) b) $2x^2 - 3y^2$	c) $\frac{4y^2+x}{m}$