	Chapter 7 Cale	endar Name:
Day	Date	Assignment (Due the next class meeting)
Monday	1/3/22 (A)	7.1 Worksheet
Tuesday	1/4/22 (B)	Factoring Review
Wednesday	1/5/22 (A)	7.2 Worksheet
Thursday	1/6/22 (B)	Simplifying Rational Expressions
Friday	1/7/22 (A)	7.3 Worksheet
Monday	1/10/22 (B)	Multiplying and Dividing Rational Functions
Tuesday	1/11/22 (A)	7.4 Day 1 Extra Worksheet
Wednesday	1/12/22 (B)	Adding Rational Functions
Thursday	1/13/22 (A)	7.4 Day 2 Worksheet
Friday	1/14/22 (B)	Adding and Subtracting Rational Functions
Monday	1/17/22	MLK Day
Tuesday	1/18/22 (A)	7.5 Worksheet
Wednesday	1/19/22 (B)	Solving Rational Equations
Thursday	1/20/22 (A)	Unit 7 Practice Test
Friday	1/21/22 (B)	Unit / Practice Test
Monday	1/24/22 (A)	Unit 7 Extra Review
Tuesday	1/25/22 (B)	Unit / Extra Review
Wednesday	1/26/22 (A)	Unit 7 Test
Thursday	1/27/22 (B)	
Friday	1/28/22 (A)	6.3 Worksheet
Monday	1/31/22 (B)	Polynomial division, remainder and factor theorems
Tuesday	2/1/22 (A)	6.4 Worksheet
Wednesday	2/2/22 (B)	Rational Roots Theorem
Thursday	2/3/22 (A)	7.6 Worksheet
Friday	2/4/22 (B)	Inverse Variation and the Reciprocal Function
Monday	2/7/22	PD Day
Tuesday	2/8/22 (A)	7.7 Worksheet
Wednesday	2/9/22 (B)	Graphing with Rational Functions
Thursday	2/10/22 (A)	Graphing Review
Friday	2/11/22 (B)	Graphing Keview
Monday	2/14/22 (A)	Unit 7 Graphing Quiz
Tuesday	2/15/22 (B)	Onit / Graphing Quiz

Chapter 7 Calendar

Name:

✤ Be prepared for daily quizzes.

* Every student is expected to do every assignment for the entire unit.

* Try <u>www.khanacademy.org</u> if you need help outside of school hours.

Student who complete 100% of their homework second semester will receive a 2% bonus to their grade! Students with no late homework will receive a pizza party too!

7.1 Notes: Review of Factoring

1) Create a polynomial that has 3 unique factors.

2) Now create a binomial that factors to a pair of conjugates.

Greatest Common Factor:	Difference of Squares	Trinomials w/ leading coefficient of 1
Trinomials w/ leading coefficient other than 1.	Factor by Grouping:	Sum/Difference of Cubes

7.2 Notes: Simplifying Rational Expressions

Factor the following completely: 1) $4x^2 - 25$ 3) $3x^2 - x - 2$ 2) $x^2 + 8x + 12$

4)
$$8x^4 + 2x^2$$
 5) $8x^3 + 16x^2 - 10x$

Things to remember about factoring...

Rational Function:

Domain of a Rational Function:

Examples: Find the domain of the following rational functions (write it in words and in set notation).

1)
$$y = \frac{3}{x}$$
 2) $f(x) = \frac{x+3}{x-2}$ 3) $y = \frac{x+4}{(x+3)(x-1)}$

You try! Find the domain of the following rational functions in set notation. a) $y = \frac{x+2}{5x}$ b) $y = \frac{6}{(x+7)(x-8)}$

Simplified Form of a Rational Expression:

Examples: Simplify the following and state the domain in set notation (or where the expression is undefined).

1)
$$\frac{x^2 + 7x + 10}{x^2 - 4}$$
 2) $\frac{x^2 + 5x + 4}{x^2 + x - 12}$

3)
$$\frac{4x^2-1}{6x^2+5x-4}$$

$$4)\frac{3x^2-24x}{3x^3-15x^2-72x}$$

You try! Simplify the following and state the domain in set notation.

Choose one of the follow	wing to complete from a – c.	
a) $\frac{4x^2+8x}{2}$	b) $\frac{x^2 - x - 12}{2x^2 - 7x - 4}$	c) $\frac{2x+3}{2x+3}$
$x^{2}-4$	$2x^2 - 7x - 4$	$(2)_{2x^2-11x-21}$

d) Create a rational function where the numerator and denominator are quadratic functions that reduce to $\frac{x+6}{x-2}$.

e) Write a rational function that has the following restrictions on the domain: $x \neq -4, 1$.

7.3 Notes: Multiplying and Dividing Rational Functions

Explain how you would multiply $\frac{3}{8} \cdot \frac{12}{9}$. How would you divide $\frac{3}{8} \div \frac{12}{9}$?

Multiplying Rational Expressions:

- 1) Factor if possible
- 2) Reduce any common factors from the numerator and denominator
- 3) Multiply the numerators and denominators

Examples: Simplify and state any restrictions on the domain.

1)	$x^2 + 4x$	$x^2 - 9x + 18$	$2) \frac{6x^2}{2}$	$^{2}+18x$	$x^2 - x - 2$
1)	$x^2 - 4x - 12$	2x	$(2) x^2$	+x-6	$3x^2 + x - 2$

You try! Simplify and state any restrictions on the domain.

a)
$$\frac{2x-7}{x^2-3x-4} \cdot \frac{x+1}{x^2-16}$$
 b) $\frac{5x^2-28x-12}{x^2+11x+30} \cdot \frac{x^2-2x-35}{x+4}$

Dividing Rational Expressions:
1) Take the ______ of the fraction after the division sign
2) Multiply

Examples: Simplify and state any restrictions on the domain.

4) $\frac{2x^2+x-3}{8x^2+12x} \div \frac{x^2-1}{2x+3}$ 5) $\frac{x^2-25}{x^2+2x-3} \div \frac{x+5}{x^2-3x-18}$

You try! Simplify and state any restrictions on the domain.

a)
$$\frac{x^2 - 9}{x^2 - 4x - 12} \div \frac{x^2 + 2x - 3}{2x^2 - 15x + 18}$$
 b) $\frac{3x^2 - 11x - 4}{3x - 27} \div \frac{x - 4}{6}$

Example 6) The area of a rectangle is $x^2 + 13x + 36$ units squared and the height of the rectangle is x + 4 units. Write an expression to represent the base of the rectangle.

7.4 Notes: Adding and Subtracting Rational Functions

Explain how you would simplify: $\frac{2}{3} + \frac{1}{9}$

Explain how you would simplify: $\frac{3}{2} - \frac{5}{4}$

Find a rational expression that when added to $\frac{x+1}{5x}$ would give a common denominator of 5x(x + 3).

Adding/Subtracting Rational Expressions:

- Factor the ______ if p
 Get a ______ denominator if possible
- 3) Add or subtract the numerators
- 4) Reduce

Examples: Simplify and state where the domain is undefined.

1) $\frac{9}{x+7} + \frac{2}{x+7}$ 2) $\frac{2x}{x+6} - \frac{5}{x+6}$

Examples: Find the Least Common Multiple

4) 2x - 2 and $x^2 - 1$ 3) 2x and $3x^2$

Examples: Simplify and state where the domain is undefined. 5) $\frac{7}{2x} - \frac{4x+12}{3x^2}$ 6) $\frac{x}{2x-2} - \frac{x}{x^2-1}$

7)
$$\frac{x+1}{x^2+6x+9}$$
 + $\frac{6}{x^2-9}$

5)
$$\frac{3}{x-4} + \frac{2x}{x-4} - \frac{11}{x^2-16}$$

You try! Simplify and state any restrictions on the domain.

a)
$$\frac{x}{x+6} + \frac{-72}{x^2-36}$$
 b) $\frac{2}{x+6} - \frac{3x-4}{x+6}$

7.5 Notes: Solving Rational Equations

Strategies for solving rational equations:

Reminder: Rational expressions *cannot* equal ______ on the denominator. Any value of *x* that would give a zero on a denominator is a domain restriction.

Exan	ples:	Solve each eq	uation for the variable.	Include	the res	strict	tions on the d	omain.
1)	$\frac{x}{x+3}$	$=\frac{6}{x-1}$		2)	$\frac{x-1}{x+4}$	=	$\frac{x+3}{x+9}$	

4)
$$\frac{5}{x} + \frac{7}{4} = \frac{-9}{x}$$
 5) $\frac{1}{x+3} - \frac{8}{x-3} = \frac{2}{x-3}$

6)
$$\frac{1}{x+1} - \frac{8}{x-2} = \frac{2}{x^2 - x - 2}$$
 7) $\frac{7x^2}{x^2 - 16} = \frac{3x}{x+4} + \frac{4x}{x-4}$

8)
$$\frac{2x}{x+3} + \frac{3x}{x-4} = \frac{5x^2 - 7x + 2}{x^2 - x - 12}$$
 9) $\frac{x}{x+2} - \frac{8}{x^2 - 4} = \frac{2}{x-2}$

6.3 Notes: Dividing Polynomials

Long Division

Divide using long division: $473 \div 12$

Divide
$$f(x) = x^3 + 3x^2 - 7$$
 by $x^2 - x - 2$

What steps did you do?

1) Divide
$$f(x) = 3x^4 - 5x^3 + 4x - 6$$
 by $x^2 - 3x + 5$

2) $(2x^3 + 10x^2 + 6x - 18) \div (2x + 6)$

Write about it: Imagine that you had to get in front of the class and explain how to do long division with polynomials. Write a paragraph describing what you would say to the class to help them understand the process.

Synthetic Division

A shorthand method for dividing a polynomial by x - a is called synthetic division. It is similar to long division, but you use only the coefficients.

3) Divide $(2x^3 + x^2 - 8x + 5)$ by (x + 3)

4) Divide $(4x^3 - 3x + 7)$ by (x - 1)

<u>Factor Theorem:</u> a polynomial f(x) has a factor x - a if and only if f(a)=0 (REMAINDER = 0)

5) Factor $f(x) = 3x^3 - 4x^2 - 28x - 16$ completely given that x + 2 is a factor.

*Because you know x+2 is a factor, you know that f(-2) = 0 or that x = -2 is a root. Use synthetic division to find the other factors. 6) Factor the polynomial completely given that $f(x) = x^3 - 6x^2 + 5x + 12$ and that x - 4 is a factor.

7) Find the other zeros of f given that f(2) = 0 and $f(x) = x^3 - x^2 - 22x + 40$

8) Find the other solutions of f given that x = -7 is a root and $f(x) = x^3 + 8x^2 + 5x - 14$

6.4 Notes: Rational Root Theorem

The Fundamental Theorem of Algebra: Any polynomial of degree **n** has at most **n** roots, both real and complex.

1) How many *x*-intercepts does the following function have? $f(x) = 7x^5 - 4x^2 + 1$

2) With a partner try to solve (find the roots of) the polynomial, $x^3 + 7x^2 + 15x + 9 = 0$.

Can it be factored? Any other ways to solve it?

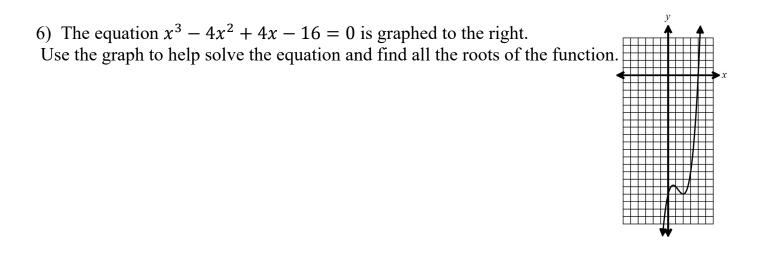
If we know <u>possible roots</u> we can use synthetic division to tell if they are <u>actual roots</u>! So how do we find a possible root?

The Rational Zeros Theorem: If f(x) is a polynomial with integer coefficients and if $\frac{p}{q}$ is a zero of f(x), then p is a factor of the constant term of f(x) and q is a factor of the leading coefficient of f(x).

3) Make a list of all possible rational zeros of f(x) given below.

Steps for finding possible roots:1. Write down all the factors of the constant term (p)

 $f(x) = 2x^4 + x^3 - 19x^2 - 9x + 9$


Write down all the factors of the leading coefficient (q)
 Write down all the possible value of ^p/_q. Remember to include both positive and negative factors.
 Remove any duplicate values.

4) Make a list of all possible roots for the function, $f(x) = x^3 + x^2 - 8x - 12$.

Now use synthetic division to see which possible roots are actual solutions to f(x). If it is a solution the remainder needs to be equal to _____.

5) Which of the following are <u>not possible solutions</u> to the function below. Choose all that apply! $f(x) = 2x^4 + 5x^3 - 5x^2 - 5x + 3$

A. 2 B.
$$-\frac{3}{2}$$
 C. 1 D. $\frac{1}{2}$ E. $-\frac{2}{3}$ F. 3 G. $\frac{1}{3}$

7) a. Find all possible roots of the function, $g(x) = 2x^4 - 3x^3 + 7x^2 + 12x$.

b. Use the possible roots and synthetic division to find the solutions.

7.6 Notes: Inverse Variation and the Reciprocal Function

Inverse Variation:

Inverse variation is a relation between two variables such that as one variable increases, the other decreases proportionally. (xy = k)

Ex 1) In an inverse variation, x = 6 and $y = \frac{1}{2}$. What is the value of y, when x = 15.

Ex 2) If x and y vary inversely and x = 4 when y = 32. What is the value of x when y = 16.

b)

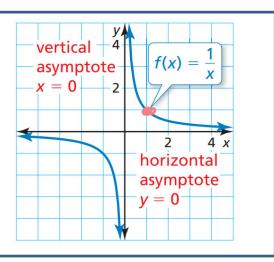
Fv 3)	Determine if the	following tab	a of values re	present inverse	variation?
LA J		following tabl	le of values le	present inverse	variation

a)	x	1	2	3	4	6	12
	у	12	6	4	3	2	1

x	1	2	3	4	5	6
у	20	17	14	11	8	5

Parent Function for Rational Functions: $f(x) = \frac{1}{x}$ Graph by using a table of values.

x	-3	-2	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	
у														Ī


Key Features Domain:

Range:

Vertical Asymptote (VA):

Horizontal Asymptote (HA):

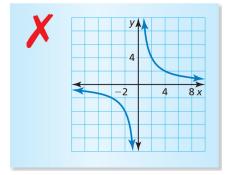
End Behavior: as $x \to \infty$, $f(x) \to _$ _____ as $x \to -\infty$, $f(x) \to _$ _____ Graphing the Simple Rational function: $y = \frac{a}{x}$ The graph of the parent function $f(x) = \frac{1}{x}$ is a hyperbola, which consists of two symmetrical parts called branches. The domain and range are all nonzero real numbers. Any function of the form $f(x) = \frac{1}{x}$ ($a \neq 0$) has the same asymptotes, domain, and range as the function $f(x) = \frac{1}{x}$.

Examples: Graph the following and state the transformation from the parent function $f(x) = \frac{1}{x}$, the domain, range (in set notation), and the vertical and horizontal asymptotes.

ie domain, range (in set notation), and in	
1) $y = \frac{4}{x}$	Transformations:
D:	
R: VA:	<pre></pre>
HA:	
$2) y = \frac{-3}{x}$	^
2) $y = \frac{-3}{x}$ Transformations:	
Transformations:	
Transformations: D:	

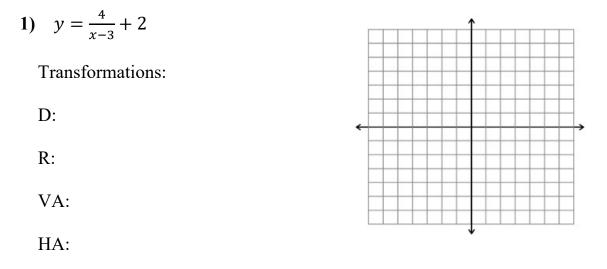
Algebra 2

Translations of Simple Rational Functions $y = \frac{a}{x-h} + k$

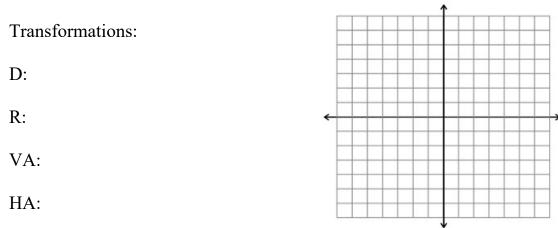

Example 3: Translate the graph of $f(x) = \frac{1}{x}$ to the left 5 units and up one unit. Write the equation of the function after the translation.

Example 4: Identify the transformations from the parent function $f(x) = \frac{1}{x}$

a.
$$f(x) = \frac{1}{x-6} + 2$$
 b. $f(x) = \frac{-1}{x+2} - 4$


c.
$$f(x) = \frac{5}{x} + 1$$
 d. $f(x) = \frac{-2}{x-3}$

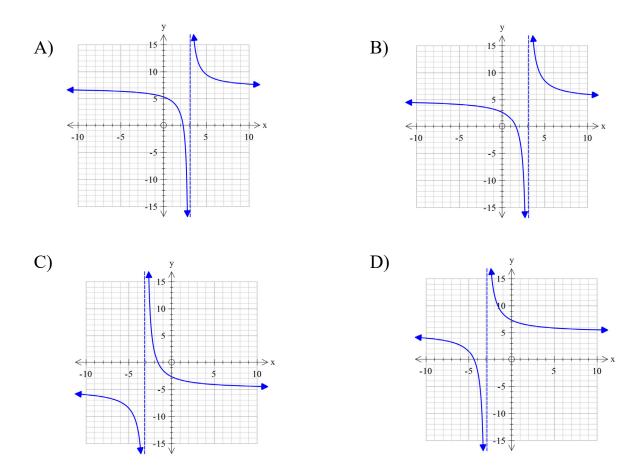
Example 5: Describe and correct the error in graphing the function $f(x) = \frac{-8}{x}$



7.7: Graphing Rational Functions in the Form $y = \frac{a}{x-h} + k$

Examples: Graph the following and state the transformation from the parent function $f(x) = \frac{1}{x}$, the domain, range (in set notation), and the vertical and horizontal asymptotes.

2)
$$y = \frac{-6}{x+1} - 3$$


Changing Rational Expressions of the form $y = \frac{ax+b}{cx+d}$ to Graphing Form $y = \frac{a}{x-h} + k$

Example 4: How could you change $f(x) = \frac{5x-7}{x-4}$ to graphing form?

Write the following rational expression in graphing form: $f(x) = \frac{5x-7}{x-4}$. Then identify the HA and VA.

Example 5: Write the following rational expression in graphing form: $f(x) = \frac{-2x+1}{x+5}$. Then identify the HA and VA.

Example 6: Which is the graph of $f(x) = \frac{5x-8}{x-3}$?

Example 7: Find the end behavior of $y = \frac{3x+5}{x+4}$.