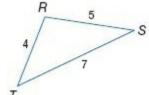
5-3 Inequalities in One Triangle

List the angles and sides of each triangle in order from smallest to largest.



15. T

SOLUTION:

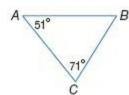
Based on the diagram, we see that RT < RS < TS. By Theorem 5.9, the measure of the angle opposite the longer side has a greater measure than the angle opposite the shorter side, therefore

 $m \angle S < m \angle T < m \angle R$.

Angle: $\angle S$, $\angle T$, $\angle R$ Side: \overline{RT} , \overline{RS} , \overline{ST}

ANSWER:

$$\angle S$$
, $\angle T$, $\angle R$; \overline{RT} , \overline{RS} , \overline{ST}



18.

SOLUTION:

By the Triangle Angle-Sum Theorem, $m\angle B = 180 - (51 + 71) = 58$.

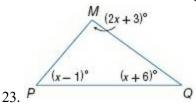
So, $m \angle A < m \angle B < m \angle C$. Therefore, by Theorem 5.10 we know that the side opposite the greater angle is longer than the side opposite a lesser angle and BC < AC < AB.

Angle: $\angle A$, $\angle B$, $\angle C$ Side: \overline{BC} , \overline{AC} , \overline{AB}

ANSWER:

 $\angle A$, $\angle B$, $\angle C$; \overline{BC} , \overline{AC} , \overline{AB}

List the angles and sides of each triangle in order from smallest to largest.



SOLUTION:

Using the Triangle Angle-Sum Theorem, we can solve for x, as shown below.

$$(2x + 3) + (x - 1) + (x + 6) = 180$$

 $4x + 8 = 180$
 $4x = 172$
 $x = 43$

 $m \angle M = 2(43) + 3 = 89$ degrees, $m \angle P = (43) - 1 = 42$ degrees and the $m \angle Q = 43 + 6 = 49$ degrees. Therefore, $m \angle P < m \angle Q < m \angle M$. By Theorem 5.10, we know that the lengths of sides across from larger angles are longer than those across from shorter angles so MQ < PM < PQ.

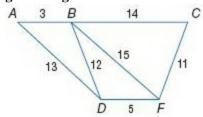
Angle: $\angle P$, $\angle Q$, $\angle M$ Side: \overline{MO} , \overline{PM} , \overline{PO}

ANSWER:

 $\angle P$, $\angle Q$, $\angle M$; \overline{MQ} , \overline{PM} , \overline{PQ}

5-3 Inequalities in One Triangle

SENSE-MAKING Use the figure to determine the relationship between the measures of the given angles.



32. ∠*BFD*, ∠*BDF*

SOLUTION:

The side opposite $\angle BFD$ is \overline{BD} , which is of length 12.

The side opposite $\angle BDF$ is \overline{BF} , which is of length 15.

Since $\overline{BD} < \overline{BF}$ in $\triangle BDF$, $m \angle BFD < m \angle BDF$ by Theorem 5.9.

ANSWER:

 $m \angle BFD < m \angle BDF$

33. ∠*DBF*, ∠*BFD*

SOLUTION:

The side opposite $\angle DBF$ is \overline{DF} , which is of length 5.

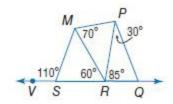
The side opposite $\angle BFD$ is \overline{BD} , which is of length 12.

Since $\overline{DF} < \overline{BD}$ in $\triangle BDF$, $m \angle DBF < m \angle BFD$ by Theorem 5.9.

ANSWER:

 $m \angle DBF < m \angle BFD$

Use the figure to determine the relationship between the lengths of the given sides.



34. SM, MR

SOLUTION:

Since $\angle MSV$ and $\angle MSR$ are a linear pair, $m\angle MSR = 180 - 110 = 70$.

The side opposite $\angle SRM$ is \overline{SM} . The side opposite $\angle MSR$ is \overline{MR} . In ΔSRM , $m\angle SRM < m\angle MSR$, since 60 < 70. Therefore, by Theorem 5.10, SM < MR.

ANSWER:

SM < MR

35. RP, MP

SOLUTION:

Since $\angle SRM$, $\angle MRP$, and $\angle PRQ$ form a straight angle, $m\angle MRP = 180 - (60 + 85)$ or 35

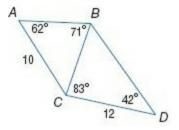
The side opposite $\angle PMR$ is \overline{RP} . The side opposite $\angle MRP$ is \overline{MP} . In $\triangle PRM$, $m\angle PMR > m\angle MRP$, since 70 < 35. Therefore, by Theorem 5.10, RP > MP.

ANSWER:

RP > MP

5-3 Inequalities in One Triangle

41. List the side lengths of the triangles in the figure from shortest to longest. Explain your reasoning.



SOLUTION:

AB, BC, AC, CD, BD; In $\triangle ABC$, AB < BC < AC and in $\triangle BCD$, BC < CD< BD.

By the figure AC < CD, so BC < AC < CD.

ANSWER:

AB, BC, AC, CD, BD; In $\triangle ABC$, AB < BC < AC and in $\triangle BCD$, BC < CD < BD. By the figure AC < CD, so BC < AC < CD.

5-4 Indirect Proof

State the assumption you would make to start an indirect proof of each statement.

13. If two lines have the same slope, the lines are parallel.

ANSWER:

The lines are not parallel.

15. If a triangle is not equilateral, the triangle is not equiangular.

ANSWER:

The triangle is equiangular.

- 47. Colin is given a figure of triangle PQR that has some of the angle measures given. He is asked to write an indirect proof that $m \angle P < 45$. What assumption should Colin make to start his indirect proof?
 - **A** Assume that $m \angle P < 45$.
 - **B** Assume that $m \angle P \ge 45$.
 - C Assume that $m \angle P = 45$.
 - **D** Assume that $m \angle P > 45$.

ANSWER:

В

5-5 The Triangle Inequality

Is it possible to form a triangle with the given side lengths? If not, explain why not.

6. 4 ft, 9 ft, 15 ft

ANSWER:

No; 4+9≯15

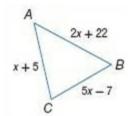
Find the range for the measure of the third side of a triangle given the measures of two sides.

14. 2.7 cm, 4.2 cm

ANSWER:

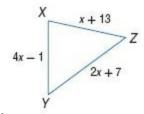
1.5 cm < n < 6.9 cm

SENSE-MAKING Determine the possible values of *x*.



20.

ANSWER:



21.

ANSWER:

$$\frac{7}{5} < x < 21$$

Find the range of possible measures of x if each set of expressions represents measures of the sides of a triangle.

26. 8, *x*, 12

ANSWER:

4 < x < 20

28. x - 2, 10, 12

ANSWER:

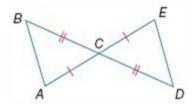
4 < x < 24

30. x, 2x + 1, x + 4

ANSWER:

$$x > \frac{3}{2}$$

43. **REASONING** What is the range of possible perimeters for figure ABCDE if AC = 7 and DC = 9? Explain your reasoning.



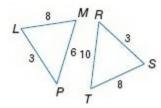
ANSWER:

The perimeter is greater than 36 and less than 64. Sample answer: From the diagram we know that $\overline{AC} \cong \overline{EC}$ and $\overline{DC} \cong \overline{BC}$, and $\angle ACB \cong \angle ECD$ because vertical angles are congruent, so $\triangle ACB \cong \triangle ECD$. Using the Triangle Inequality Theorem, the minimum value of AB and ED is 2 and the maximum value is 16. Therefore, the minimum value of the perimeter is greater than 2(2+7+9) or 36, and the maximum value of the perimeter is less than 2(16+7+9) or 64.

5-6 Inequalities in Two Triangles

Compare the given measures.

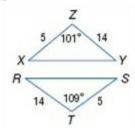
11. $m \angle MLP$ and $m \angle TSR$



SOLUTION:

In $\triangle MLP$ and $\triangle RST$, $LP \cong RS$, $LM \cong ST$, and MP < RT. By the converse of the Hinge Theorem, $m \angle MLP < m \angle TSR$.

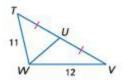
12. SR and XY



SOLUTION:

In $\triangle XYZ$ and $\triangle TSR$, $ST \cong XZ$, $RT \cong ZY$, and $m\angle RTS > m\angle XZY$. By the Hinge Theorem, SR > XY.

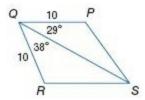
13. $m \angle TUW$ and $m \angle VUW$



SOLUTION:

In $\triangle TUW$ and $\triangle VUW$, $TU \cong UV$, $UW \cong UW$, and TW > WV. By the converse of the Hinge Theorem, $m \angle TUW < m \angle VUW$.

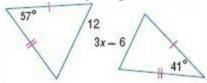
14. PS and SR



SOLUTION:

In $\triangle QPS$ and $\triangle QRS$, $QP \cong QR, QS \cong QS$, and $m\angle RQS > m\angle SQP$. By the Hinge Theorem, PS < SR.

Find the range of possible values for x.



17.

SOLUTION:

Since we have two pairs of congruent sides, by the Hinge Theorem, we can state that the side opposite the 57° angle is greater than the 41° angle.

Therefore, we can write the inequality 12 > 3x - 6.

$$12+6 > 3x-6+6$$
$$18 > 3x$$
$$6 > x$$

Using the fact that the measure of any side is greater than 0, we can write a second inequality.

$$3x-6>0$$

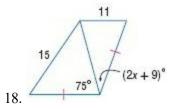
$$3x-6+6>0+6$$

$$3x>6$$

$$x>2$$

Write x > 2 and x < 6 as the compound inequality 2 < x < 6.

5-6 Inequalities in Two Triangles



SOLUTION:

Since we have two pairs of congruent sides, by the Converse of the Hinge Theorem, we can state that the angle opposite the side with a length of 15 is greater than the angle opposite the side with a length of 11. Therefore, we can write the inequality 75 > 2x + 9.

$$75 > 2x + 9$$

 $75 - 9 > 2x + 9 - 9$
 $66 > 2x$
 $33 > x$

Using the fact that the measure of any angle in a polygon is greater than 0, we can write a second inequality:

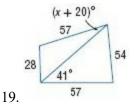
$$2x+9>0$$

$$2x+9-9>0-9$$

$$x>-\frac{9}{2}$$

$$x>-4.5$$

Write x > -4.5 and x < 33 as the compound inequality -4.5 < x < 33.



SOLUTION:

Since we have two pairs of congruent sides, by the Converse of the Hinge Theorem, we can state that the angle opposite the side with a length of 57 is greater than the angle opposite the side with a length of 54. Therefore, we can write and solve the inequality 41 > x + 20.

$$41 > x + 20$$

 $41 - 20 > x + 20 - 20$
 $21 > x$

Using the fact that the measure of any angle is greater than 0, we can write a second inequality:

$$x + 20 > 0$$

 $x + 20 - 20 > 0 - 20$
 $x > -20$

Write x > -20 and x < 21 as the compound inequality -20 < x < 21.

5-6 Inequalities in Two Triangles



20.

SOLUTION:

First, find the missing angle measures in the diagram. Notice that the 60° angle is part of a right angle, which makes the angle adjacent to the 60° angle equal 30° Since you already know that another angle in this triangle is 95° , you can find the missing angle, across from the 3x + 17 side, measures 55° , using the Triangle Sum Theorem.

Since we have two pairs of congruent sides, by the Hinge Theorem, we can state that the side opposite the 60-degree angle is greater than the 55-degree angle. Therefore, we can write the inequality

$$5x + 3 > 3x + 17$$

 $5x + 3 > 3x + 17$
 $5x + 3 - 3x > 3x + 17 - 3x$
 $2x + 3 > 17$
 $2x > 14$
 $x > 7$

Using the fact that any value of x greater than 7 will result in side lengths that are greater than zero, we can conclude the answer is x < 7.